android_device_xiaomi_sdm66.../gnss/GnssAdapter.cpp
Madhanraj Chelladurai 681388fa8d Enable Measurement and poly for QDR for automotive usecase
We need to enable Measurement and polynomial reports and need to
send it to QDR Core for it to compute fix and report back DR fix,
hence need to enable them in automotive QDR use case

Change-Id: I8ad29402ded424bbc5a4fd9f6cab74fa7b09f86b
CRs-Fixed: 2017935
2017-03-10 17:22:03 +05:30

3225 lines
110 KiB
C++

/* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation, nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define LOG_TAG "LocSvc_GnssAdapter"
#include <sys/stat.h>
#include <errno.h>
#include <ctype.h>
#include <cutils/properties.h>
#include <math.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netdb.h>
#include <GnssAdapter.h>
#include <string>
#include <loc_log.h>
#include <Agps.h>
using namespace loc_core;
GnssAdapter::GnssAdapter() :
LocAdapterBase(0,
LocDualContext::getLocFgContext(NULL,
NULL,
LocDualContext::mLocationHalName,
false)),
mUlpProxy(new UlpProxyBase()),
mSuplMode(GNSS_SUPL_MODE_STANDALONE),
mUlpPositionMode(),
mGnssSvIdUsedInPosition(),
mGnssSvIdUsedInPosAvail(false),
mControlCallbacks(),
mPowerVoteId(0),
mNiData(),
mAgpsManager()
{
LOC_LOGD("%s]: Constructor %p", __func__, this);
mUlpPositionMode.mode = LOC_POSITION_MODE_INVALID;
readConfigCommand();
setConfigCommand();
}
inline
GnssAdapter::~GnssAdapter()
{
LOC_LOGD("%s]: Destructor", __func__);
delete mUlpProxy;
}
void
GnssAdapter::setControlCallbacksCommand(LocationControlCallbacks& controlCallbacks)
{
struct MsgSetControlCallbacks : public LocMsg {
GnssAdapter& mAdapter;
const LocationControlCallbacks mControlCallbacks;
inline MsgSetControlCallbacks(GnssAdapter& adapter,
LocationControlCallbacks& controlCallbacks) :
LocMsg(),
mAdapter(adapter),
mControlCallbacks(controlCallbacks) {}
inline virtual void proc() const {
mAdapter.setControlCallbacks(mControlCallbacks);
}
};
sendMsg(new MsgSetControlCallbacks(*this, controlCallbacks));
}
void
GnssAdapter::convertOptions(LocPosMode& out, const LocationOptions& options)
{
LocPosMode locPosMode = {};
switch (options.mode) {
case GNSS_SUPL_MODE_MSB:
out.mode = LOC_POSITION_MODE_MS_BASED;
break;
case GNSS_SUPL_MODE_MSA:
out.mode = LOC_POSITION_MODE_MS_ASSISTED;
break;
default:
out.mode = LOC_POSITION_MODE_STANDALONE;
break;
}
out.share_position = true;
out.min_interval = options.minInterval;
}
void
GnssAdapter::convertLocation(Location& out, const LocGpsLocation& locGpsLocation,
const LocPosTechMask techMask)
{
out.size = sizeof(Location);
if (LOC_GPS_LOCATION_HAS_LAT_LONG & locGpsLocation.flags) {
out.flags |= LOCATION_HAS_LAT_LONG_BIT;
out.latitude = locGpsLocation.latitude;
out.longitude = locGpsLocation.longitude;
}
if (LOC_GPS_LOCATION_HAS_ALTITUDE & locGpsLocation.flags) {
out.flags |= LOCATION_HAS_ALTITUDE_BIT;
out.altitude = locGpsLocation.altitude;
}
if (LOC_GPS_LOCATION_HAS_SPEED & locGpsLocation.flags) {
out.flags |= LOCATION_HAS_SPEED_BIT;
out.speed = locGpsLocation.speed;
}
if (LOC_GPS_LOCATION_HAS_BEARING & locGpsLocation.flags) {
out.flags |= LOCATION_HAS_BEARING_BIT;
out.bearing = locGpsLocation.bearing;
}
if (LOC_GPS_LOCATION_HAS_ACCURACY & locGpsLocation.flags) {
out.flags |= LOCATION_HAS_ACCURACY_BIT;
out.accuracy = locGpsLocation.accuracy;
}
out.timestamp = locGpsLocation.timestamp;
if (LOC_POS_TECH_MASK_SATELLITE & techMask) {
out.techMask |= LOCATION_TECHNOLOGY_GNSS_BIT;
}
if (LOC_POS_TECH_MASK_CELLID & techMask) {
out.techMask |= LOCATION_TECHNOLOGY_CELL_BIT;
}
if (LOC_POS_TECH_MASK_WIFI & techMask) {
out.techMask |= LOCATION_TECHNOLOGY_WIFI_BIT;
}
if (LOC_POS_TECH_MASK_SENSORS & techMask) {
out.techMask |= LOCATION_TECHNOLOGY_SENSORS_BIT;
}
}
void
GnssAdapter::convertLocationInfo(GnssLocationInfoNotification& out,
const GpsLocationExtended& locationExtended)
{
out.size = sizeof(GnssLocationInfoNotification);
if (GPS_LOCATION_EXTENDED_HAS_ALTITUDE_MEAN_SEA_LEVEL & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_ALTITUDE_MEAN_SEA_LEVEL_BIT;
out.altitudeMeanSeaLevel = locationExtended.altitudeMeanSeaLevel;
}
if (GPS_LOCATION_EXTENDED_HAS_DOP & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_DOP_BIT;
out.pdop = locationExtended.pdop;
out.hdop = locationExtended.hdop;
out.vdop = locationExtended.vdop;
}
if (GPS_LOCATION_EXTENDED_HAS_MAG_DEV & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_MAGNETIC_DEVIATION_BIT;
out.magneticDeviation = locationExtended.magneticDeviation;
}
if (GPS_LOCATION_EXTENDED_HAS_VERT_UNC & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_VER_ACCURACY_BIT;
out.verAccuracy = locationExtended.vert_unc;
}
if (GPS_LOCATION_EXTENDED_HAS_SPEED_UNC & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_SPEED_ACCURACY_BIT;
out.speedAccuracy = locationExtended.speed_unc;
}
if (GPS_LOCATION_EXTENDED_HAS_BEARING_UNC & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_BEARING_ACCURACY_BIT;
out.bearingAccuracy = locationExtended.bearing_unc;
}
if (GPS_LOCATION_EXTENDED_HAS_HOR_RELIABILITY & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_HOR_RELIABILITY_BIT;
switch (locationExtended.horizontal_reliability) {
case LOC_RELIABILITY_VERY_LOW:
out.horReliability = LOCATION_RELIABILITY_VERY_LOW;
break;
case LOC_RELIABILITY_LOW:
out.horReliability = LOCATION_RELIABILITY_LOW;
break;
case LOC_RELIABILITY_MEDIUM:
out.horReliability = LOCATION_RELIABILITY_MEDIUM;
break;
case LOC_RELIABILITY_HIGH:
out.horReliability = LOCATION_RELIABILITY_HIGH;
break;
default:
out.horReliability = LOCATION_RELIABILITY_NOT_SET;
break;
}
}
if (GPS_LOCATION_EXTENDED_HAS_VERT_RELIABILITY & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_VER_RELIABILITY_BIT;
switch (locationExtended.vertical_reliability) {
case LOC_RELIABILITY_VERY_LOW:
out.verReliability = LOCATION_RELIABILITY_VERY_LOW;
break;
case LOC_RELIABILITY_LOW:
out.verReliability = LOCATION_RELIABILITY_LOW;
break;
case LOC_RELIABILITY_MEDIUM:
out.verReliability = LOCATION_RELIABILITY_MEDIUM;
break;
case LOC_RELIABILITY_HIGH:
out.verReliability = LOCATION_RELIABILITY_HIGH;
break;
default:
out.verReliability = LOCATION_RELIABILITY_NOT_SET;
break;
}
}
if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MAJOR & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MAJOR_BIT;
out.horUncEllipseSemiMajor = locationExtended.horUncEllipseSemiMajor;
}
if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_MINOR & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_SEMI_MINOR_BIT;
out.horUncEllipseSemiMinor = locationExtended.horUncEllipseSemiMinor;
}
if (GPS_LOCATION_EXTENDED_HAS_HOR_ELIP_UNC_AZIMUTH & locationExtended.flags) {
out.flags |= GNSS_LOCATION_INFO_HOR_ACCURACY_ELIP_AZIMUTH_BIT;
out.horUncEllipseOrientAzimuth = locationExtended.horUncEllipseOrientAzimuth;
}
}
inline uint32_t
GnssAdapter::convertGpsLock(const GnssConfigGpsLock gpsLock)
{
switch (gpsLock) {
case GNSS_CONFIG_GPS_LOCK_MO:
return 1;
case GNSS_CONFIG_GPS_LOCK_NI:
return 2;
case GNSS_CONFIG_GPS_LOCK_MO_AND_NI:
return 3;
case GNSS_CONFIG_GPS_LOCK_NONE:
default:
return 0;
}
}
inline GnssConfigGpsLock
GnssAdapter::convertGpsLock(const uint32_t gpsLock)
{
switch (gpsLock) {
case 1:
return GNSS_CONFIG_GPS_LOCK_MO;
case 2:
return GNSS_CONFIG_GPS_LOCK_NI;
case 3:
return GNSS_CONFIG_GPS_LOCK_MO_AND_NI;
case 0:
default:
return GNSS_CONFIG_GPS_LOCK_NONE;
}
}
inline uint32_t
GnssAdapter::convertSuplVersion(const GnssConfigSuplVersion suplVersion)
{
switch (suplVersion) {
case GNSS_CONFIG_SUPL_VERSION_2_0_0:
return 0x00020000;
case GNSS_CONFIG_SUPL_VERSION_2_0_2:
return 0x00020002;
case GNSS_CONFIG_SUPL_VERSION_1_0_0:
default:
return 0x00010000;
}
}
inline GnssConfigSuplVersion
GnssAdapter::convertSuplVersion(const uint32_t suplVersion)
{
switch (suplVersion) {
case 0x00020000:
return GNSS_CONFIG_SUPL_VERSION_2_0_0;
case 0x00020002:
return GNSS_CONFIG_SUPL_VERSION_2_0_2;
case 0x00010000:
default:
return GNSS_CONFIG_SUPL_VERSION_1_0_0;
}
}
inline uint32_t
GnssAdapter::convertLppProfile(const GnssConfigLppProfile lppProfile)
{
switch (lppProfile) {
case GNSS_CONFIG_LPP_PROFILE_USER_PLANE:
return 1;
case GNSS_CONFIG_LPP_PROFILE_CONTROL_PLANE:
return 2;
case GNSS_CONFIG_LPP_PROFILE_USER_PLANE_AND_CONTROL_PLANE:
return 3;
case GNSS_CONFIG_LPP_PROFILE_RRLP_ON_LTE:
default:
return 0;
}
}
inline GnssConfigLppProfile
GnssAdapter::convertLppProfile(const uint32_t lppProfile)
{
switch (lppProfile) {
case 1:
return GNSS_CONFIG_LPP_PROFILE_USER_PLANE;
case 2:
return GNSS_CONFIG_LPP_PROFILE_CONTROL_PLANE;
case 3:
return GNSS_CONFIG_LPP_PROFILE_USER_PLANE_AND_CONTROL_PLANE;
case 0:
default:
return GNSS_CONFIG_LPP_PROFILE_RRLP_ON_LTE;
}
}
uint32_t
GnssAdapter::convertLppeCp(const GnssConfigLppeControlPlaneMask lppeControlPlaneMask)
{
uint32_t mask = 0;
if (GNSS_CONFIG_LPPE_CONTROL_PLANE_DBH_BIT & lppeControlPlaneMask) {
mask |= (1<<0);
}
if (GNSS_CONFIG_LPPE_CONTROL_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeControlPlaneMask) {
mask |= (1<<1);
}
return mask;
}
GnssConfigLppeControlPlaneMask
GnssAdapter::convertLppeCp(const uint32_t lppeControlPlaneMask)
{
GnssConfigLppeControlPlaneMask mask = 0;
if ((1<<0) & lppeControlPlaneMask) {
mask |= GNSS_CONFIG_LPPE_CONTROL_PLANE_DBH_BIT;
}
if ((1<<1) & lppeControlPlaneMask) {
mask |= GNSS_CONFIG_LPPE_CONTROL_PLANE_WLAN_AP_MEASUREMENTS_BIT;
}
return mask;
}
uint32_t
GnssAdapter::convertLppeUp(const GnssConfigLppeUserPlaneMask lppeUserPlaneMask)
{
uint32_t mask = 0;
if (GNSS_CONFIG_LPPE_USER_PLANE_DBH_BIT & lppeUserPlaneMask) {
mask |= (1<<0);
}
if (GNSS_CONFIG_LPPE_USER_PLANE_WLAN_AP_MEASUREMENTS_BIT & lppeUserPlaneMask) {
mask |= (1<<1);
}
return mask;
}
GnssConfigLppeUserPlaneMask
GnssAdapter::convertLppeUp(const uint32_t lppeUserPlaneMask)
{
GnssConfigLppeUserPlaneMask mask = 0;
if ((1<<0) & lppeUserPlaneMask) {
mask |= GNSS_CONFIG_LPPE_USER_PLANE_DBH_BIT;
}
if ((1<<1) & lppeUserPlaneMask) {
mask |= GNSS_CONFIG_LPPE_USER_PLANE_WLAN_AP_MEASUREMENTS_BIT;
}
return mask;
}
uint32_t
GnssAdapter::convertAGloProt(const GnssConfigAGlonassPositionProtocolMask aGloPositionProtocolMask)
{
uint32_t mask = 0;
if (GNSS_CONFIG_RRC_CONTROL_PLANE_BIT & aGloPositionProtocolMask) {
mask |= (1<<0);
}
if (GNSS_CONFIG_RRLP_USER_PLANE_BIT & aGloPositionProtocolMask) {
mask |= (1<<1);
}
if (GNSS_CONFIG_LLP_USER_PLANE_BIT & aGloPositionProtocolMask) {
mask |= (1<<2);
}
if (GNSS_CONFIG_LLP_CONTROL_PLANE_BIT & aGloPositionProtocolMask) {
mask |= (1<<3);
}
return mask;
}
uint32_t
GnssAdapter::convertEP4ES(const GnssConfigEmergencyPdnForEmergencySupl emergencyPdnForEmergencySupl)
{
switch (emergencyPdnForEmergencySupl) {
case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_YES:
return 1;
case GNSS_CONFIG_EMERGENCY_PDN_FOR_EMERGENCY_SUPL_NO:
default:
return 0;
}
}
uint32_t
GnssAdapter::convertSuplEs(const GnssConfigSuplEmergencyServices suplEmergencyServices)
{
switch (suplEmergencyServices) {
case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_YES:
return 1;
case GNSS_CONFIG_SUPL_EMERGENCY_SERVICES_NO:
default:
return 0;
}
}
uint32_t
GnssAdapter::convertSuplMode(const GnssConfigSuplModeMask suplModeMask)
{
uint32_t mask = 0;
if (GNSS_CONFIG_SUPL_MODE_MSB & suplModeMask) {
mask |= (1<<0);
}
if (GNSS_CONFIG_SUPL_MODE_MSA & suplModeMask) {
mask |= (1<<1);
}
return mask;
}
bool
GnssAdapter::resolveInAddress(const char* hostAddress, struct in_addr* inAddress)
{
bool ret = true;
struct hostent* hp;
hp = gethostbyname(hostAddress);
if (hp != NULL) { /* DNS OK */
memcpy(inAddress, hp->h_addr_list[0], hp->h_length);
} else {
/* Try IP representation */
if (inet_aton(hostAddress, inAddress) == 0) {
/* IP not valid */
LOC_LOGE("%s]: DNS query on '%s' failed", __func__, hostAddress);
ret = false;
}
}
return ret;
}
void
GnssAdapter::readConfigCommand()
{
LOC_LOGD("%s]: ", __func__);
struct MsgReadConfig : public LocMsg {
GnssAdapter* mAdapter;
ContextBase& mContext;
inline MsgReadConfig(GnssAdapter* adapter,
ContextBase& context) :
LocMsg(),
mAdapter(adapter),
mContext(context) {}
inline virtual void proc() const {
// reads config into mContext->mGps_conf
mContext.readConfig();
mContext.requestUlp((LocAdapterBase*)mAdapter, mContext.getCarrierCapabilities());
}
};
if (mContext != NULL) {
sendMsg(new MsgReadConfig(this, *mContext));
}
}
void
GnssAdapter::setConfigCommand()
{
LOC_LOGD("%s]: ", __func__);
struct MsgSetConfig : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
inline MsgSetConfig(GnssAdapter& adapter,
LocApiBase& api) :
LocMsg(),
mAdapter(adapter),
mApi(api) {}
inline virtual void proc() const {
if (ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
mApi.setSUPLVersion(mAdapter.convertSuplVersion(ContextBase::mGps_conf.SUPL_VER));
mApi.setLPPConfig(mAdapter.convertLppProfile(ContextBase::mGps_conf.LPP_PROFILE));
mApi.setAGLONASSProtocol(ContextBase::mGps_conf.A_GLONASS_POS_PROTOCOL_SELECT);
}
mApi.setSensorControlConfig(ContextBase::mSap_conf.SENSOR_USAGE,
ContextBase::mSap_conf.SENSOR_PROVIDER);
mApi.setLPPeProtocolCp(
mAdapter.convertLppeCp(ContextBase::mGps_conf.LPPE_CP_TECHNOLOGY));
mApi.setLPPeProtocolUp(
mAdapter.convertLppeUp(ContextBase::mGps_conf.LPPE_UP_TECHNOLOGY));
if (NMEA_PROVIDER_MP == ContextBase::mGps_conf.NMEA_PROVIDER) {
mApi.setNMEATypes(LOC_NMEA_ALL_SUPPORTED_MASK);
}
mApi.setXtraVersionCheck(ContextBase::mGps_conf.XTRA_VERSION_CHECK);
if (ContextBase::mSap_conf.GYRO_BIAS_RANDOM_WALK_VALID ||
ContextBase::mSap_conf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID ||
ContextBase::mSap_conf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID ||
ContextBase::mSap_conf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID ||
ContextBase::mSap_conf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID ) {
mApi.setSensorProperties(
ContextBase::mSap_conf.GYRO_BIAS_RANDOM_WALK_VALID,
ContextBase::mSap_conf.GYRO_BIAS_RANDOM_WALK,
ContextBase::mSap_conf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY_VALID,
ContextBase::mSap_conf.ACCEL_RANDOM_WALK_SPECTRAL_DENSITY,
ContextBase::mSap_conf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY_VALID,
ContextBase::mSap_conf.ANGLE_RANDOM_WALK_SPECTRAL_DENSITY,
ContextBase::mSap_conf.RATE_RANDOM_WALK_SPECTRAL_DENSITY_VALID,
ContextBase::mSap_conf.RATE_RANDOM_WALK_SPECTRAL_DENSITY,
ContextBase::mSap_conf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY_VALID,
ContextBase::mSap_conf.VELOCITY_RANDOM_WALK_SPECTRAL_DENSITY);
}
mApi.setSensorPerfControlConfig(
ContextBase::mSap_conf.SENSOR_CONTROL_MODE,
ContextBase::mSap_conf.SENSOR_ACCEL_SAMPLES_PER_BATCH,
ContextBase::mSap_conf.SENSOR_ACCEL_BATCHES_PER_SEC,
ContextBase::mSap_conf.SENSOR_GYRO_SAMPLES_PER_BATCH,
ContextBase::mSap_conf.SENSOR_GYRO_BATCHES_PER_SEC,
ContextBase::mSap_conf.SENSOR_ACCEL_SAMPLES_PER_BATCH_HIGH,
ContextBase::mSap_conf.SENSOR_ACCEL_BATCHES_PER_SEC_HIGH,
ContextBase::mSap_conf.SENSOR_GYRO_SAMPLES_PER_BATCH_HIGH,
ContextBase::mSap_conf.SENSOR_GYRO_BATCHES_PER_SEC_HIGH,
ContextBase::mSap_conf.SENSOR_ALGORITHM_CONFIG_MASK);
}
};
sendMsg(new MsgSetConfig(*this, *mLocApi));
}
uint32_t*
GnssAdapter::gnssUpdateConfigCommand(GnssConfig config)
{
// count the number of bits set
GnssConfigFlagsMask flagsCopy = config.flags;
size_t count = 0;
while (flagsCopy > 0) {
if (flagsCopy & 1) {
count++;
}
flagsCopy >>= 1;
}
std::string idsString = "[";
uint32_t* ids = NULL;
if (count > 0) {
ids = new uint32_t[count];
for (size_t i=0; i < count; ++i) {
ids[i] = generateSessionId();
IF_LOC_LOGD {
idsString += std::to_string(ids[i]) + " ";
}
}
}
idsString += "]";
LOC_LOGD("%s]: ids %s flags 0x%X", __func__, idsString.c_str(), config.flags);
struct MsgGnssUpdateConfig : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
GnssConfig mConfig;
uint32_t* mIds;
size_t mCount;
inline MsgGnssUpdateConfig(GnssAdapter& adapter,
LocApiBase& api,
GnssConfig config,
uint32_t* ids,
size_t count) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mConfig(config),
mIds(ids),
mCount(count) {}
inline virtual ~MsgGnssUpdateConfig()
{
delete[] mIds;
}
inline virtual void proc() const {
//const size_t MAX_BITS_COUNT = 10;
//LocationError errs[MAX_BITS_COUNT] = {};
LocationError* errs = new LocationError[mCount];
LocationError err = LOCATION_ERROR_SUCCESS;
uint32_t index = 0;
if (mConfig.flags & GNSS_CONFIG_FLAGS_GPS_LOCK_VALID_BIT) {
uint32_t newGpsLock = mAdapter.convertGpsLock(mConfig.gpsLock);
ContextBase::mGps_conf.GPS_LOCK = newGpsLock;
if (0 == mAdapter.getPowerVoteId()) {
err = mApi.setGpsLock(mConfig.gpsLock);
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_SUPL_VERSION_VALID_BIT) {
uint32_t newSuplVersion = mAdapter.convertSuplVersion(mConfig.suplVersion);
if (newSuplVersion != ContextBase::mGps_conf.SUPL_VER &&
ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
ContextBase::mGps_conf.SUPL_VER = newSuplVersion;
err = mApi.setSUPLVersion(mConfig.suplVersion);
} else {
err = LOCATION_ERROR_SUCCESS;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_SET_ASSISTANCE_DATA_VALID_BIT) {
if (GNSS_ASSISTANCE_TYPE_SUPL == mConfig.assistanceServer.type) {
if (ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
char serverUrl[MAX_URL_LEN] = {};
uint32_t length = 0;
const char noHost[] = "NONE";
if (NULL == mConfig.assistanceServer.hostName ||
strncasecmp(noHost,
mConfig.assistanceServer.hostName,
sizeof(noHost)) == 0) {
} else {
length = snprintf(serverUrl, sizeof(serverUrl), "%s:%u",
mConfig.assistanceServer.hostName,
mConfig.assistanceServer.port);
}
if (sizeof(serverUrl) > length) {
err = mApi.setServer(serverUrl, length);
} else {
err = LOCATION_ERROR_INVALID_PARAMETER;
}
} else {
err = LOCATION_ERROR_SUCCESS;
}
} else if (GNSS_ASSISTANCE_TYPE_C2K == mConfig.assistanceServer.type) {
if (ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
struct in_addr addr;
if (!mAdapter.resolveInAddress(mConfig.assistanceServer.hostName, &addr)) {
LOC_LOGE("%s]: hostName %s cannot be resolved",
__func__, mConfig.assistanceServer.hostName);
err = LOCATION_ERROR_INVALID_PARAMETER;
} else {
unsigned int ip = htonl(addr.s_addr);
err = mApi.setServer(ip, mConfig.assistanceServer.port,
LOC_AGPS_CDMA_PDE_SERVER);
}
} else {
err = LOCATION_ERROR_SUCCESS;
}
} else {
LOC_LOGE("%s]: Not a valid gnss assistance type %u",
__func__, mConfig.assistanceServer.type);
err = LOCATION_ERROR_INVALID_PARAMETER;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_LPP_PROFILE_VALID_BIT) {
uint32_t newLppProfile = mAdapter.convertLppProfile(mConfig.lppProfile);
if (newLppProfile != ContextBase::mGps_conf.LPP_PROFILE &&
ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
ContextBase::mGps_conf.LPP_PROFILE = newLppProfile;
err = mApi.setLPPConfig(mConfig.lppProfile);
} else {
err = LOCATION_ERROR_SUCCESS;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_LPPE_CONTROL_PLANE_VALID_BIT) {
uint32_t newLppeControlPlaneMask =
mAdapter.convertLppeCp(mConfig.lppeControlPlaneMask);
if (newLppeControlPlaneMask != ContextBase::mGps_conf.LPPE_CP_TECHNOLOGY) {
ContextBase::mGps_conf.LPPE_CP_TECHNOLOGY = newLppeControlPlaneMask;
err = mApi.setLPPeProtocolCp(mConfig.lppeControlPlaneMask);
} else {
err = LOCATION_ERROR_SUCCESS;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_LPPE_USER_PLANE_VALID_BIT) {
uint32_t newLppeUserPlaneMask =
mAdapter.convertLppeUp(mConfig.lppeUserPlaneMask);
if (newLppeUserPlaneMask != ContextBase::mGps_conf.LPPE_UP_TECHNOLOGY) {
ContextBase::mGps_conf.LPPE_UP_TECHNOLOGY = newLppeUserPlaneMask;
err = mApi.setLPPeProtocolUp(mConfig.lppeUserPlaneMask);
} else {
err = LOCATION_ERROR_SUCCESS;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_AGLONASS_POSITION_PROTOCOL_VALID_BIT) {
uint32_t newAGloProtMask =
mAdapter.convertAGloProt(mConfig.aGlonassPositionProtocolMask);
if (newAGloProtMask != ContextBase::mGps_conf.A_GLONASS_POS_PROTOCOL_SELECT &&
ContextBase::mGps_conf.AGPS_CONFIG_INJECT) {
ContextBase::mGps_conf.A_GLONASS_POS_PROTOCOL_SELECT = newAGloProtMask;
err = mApi.setAGLONASSProtocol(mConfig.aGlonassPositionProtocolMask);
} else {
err = LOCATION_ERROR_SUCCESS;
}
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_EM_PDN_FOR_EM_SUPL_VALID_BIT) {
uint32_t newEP4ES = mAdapter.convertEP4ES(mConfig.emergencyPdnForEmergencySupl);
if (newEP4ES != ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL) {
ContextBase::mGps_conf.USE_EMERGENCY_PDN_FOR_EMERGENCY_SUPL = newEP4ES;
}
err = LOCATION_ERROR_SUCCESS;
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_SUPL_EM_SERVICES_BIT) {
uint32_t newSuplEs = mAdapter.convertSuplEs(mConfig.suplEmergencyServices);
if (newSuplEs != ContextBase::mGps_conf.SUPL_ES) {
ContextBase::mGps_conf.SUPL_ES = newSuplEs;
}
err = LOCATION_ERROR_SUCCESS;
if (index < mCount) {
errs[index++] = err;
}
}
if (mConfig.flags & GNSS_CONFIG_FLAGS_SUPL_MODE_BIT) {
uint32_t newSuplMode = mAdapter.convertSuplMode(mConfig.suplModeMask);
if (newSuplMode != ContextBase::mGps_conf.SUPL_MODE) {
ContextBase::mGps_conf.SUPL_MODE = newSuplMode;
mAdapter.getUlpProxy()->setCapabilities(
ContextBase::getCarrierCapabilities());
}
err = LOCATION_ERROR_SUCCESS;
if (index < mCount) {
errs[index++] = err;
}
}
mAdapter.reportResponse(index, errs, mIds);
delete[] errs;
}
};
if (NULL != ids) {
sendMsg(new MsgGnssUpdateConfig(*this, *mLocApi, config, ids, count));
} else {
LOC_LOGE("%s]: No GNSS config items to update", __func__);
}
return ids;
}
uint32_t
GnssAdapter::gnssDeleteAidingDataCommand(GnssAidingData& data)
{
uint32_t sessionId = generateSessionId();
LOC_LOGD("%s]: client %p id %u", __func__, sessionId);
struct MsgDeleteAidingData : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
uint32_t mSessionId;
GnssAidingData mData;
inline MsgDeleteAidingData(GnssAdapter& adapter,
LocApiBase& api,
uint32_t sessionId,
GnssAidingData& data) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mSessionId(sessionId),
mData(data) {}
inline virtual void proc() const {
LocationError err = LOCATION_ERROR_SUCCESS;
#ifdef TARGET_BUILD_VARIANT_USER
err = LOCATION_ERROR_NOT_SUPPORTED;
#endif
if (LOCATION_ERROR_SUCCESS == err) {
err = mApi.deleteAidingData(mData);
}
mAdapter.reportResponse(err, mSessionId);
}
};
sendMsg(new MsgDeleteAidingData(*this, *mLocApi, sessionId, data));
return sessionId;
}
void
GnssAdapter::injectLocationCommand(double latitude, double longitude, float accuracy)
{
LOC_LOGD("%s]: latitude %8.4f longitude %8.4f accuracy %8.4f",
__func__, latitude, longitude, accuracy);
struct MsgInjectLocation : public LocMsg {
LocApiBase& mApi;
ContextBase& mContext;
double mLatitude;
double mLongitude;
float mAccuracy;
inline MsgInjectLocation(LocApiBase& api,
ContextBase& context,
double latitude,
double longitude,
float accuracy) :
LocMsg(),
mApi(api),
mContext(context),
mLatitude(latitude),
mLongitude(longitude),
mAccuracy(accuracy) {}
inline virtual void proc() const {
if (!mContext.hasCPIExtendedCapabilities()) {
mApi.injectPosition(mLatitude, mLongitude, mAccuracy);
}
}
};
sendMsg(new MsgInjectLocation(*mLocApi, *mContext, latitude, longitude, accuracy));
}
void
GnssAdapter::injectTimeCommand(int64_t time, int64_t timeReference, int32_t uncertainty)
{
LOC_LOGD("%s]: time %lld timeReference %lld uncertainty %d",
__func__, time, timeReference, uncertainty);
struct MsgInjectTime : public LocMsg {
LocApiBase& mApi;
ContextBase& mContext;
int64_t mTime;
int64_t mTimeReference;
int32_t mUncertainty;
inline MsgInjectTime(LocApiBase& api,
ContextBase& context,
int64_t time,
int64_t timeReference,
int32_t uncertainty) :
LocMsg(),
mApi(api),
mContext(context),
mTime(time),
mTimeReference(timeReference),
mUncertainty(uncertainty) {}
inline virtual void proc() const {
mApi.setTime(mTime, mTimeReference, mUncertainty);
}
};
sendMsg(new MsgInjectTime(*mLocApi, *mContext, time, timeReference, uncertainty));
}
void
GnssAdapter::setUlpProxyCommand(UlpProxyBase* ulp)
{
LOC_LOGD("%s]: ", __func__);
struct MsgSetUlpProxy : public LocMsg {
GnssAdapter& mAdapter;
UlpProxyBase* mUlp;
inline MsgSetUlpProxy(GnssAdapter& adapter,
UlpProxyBase* ulp) :
LocMsg(),
mAdapter(adapter),
mUlp(ulp) {}
inline virtual void proc() const {
mAdapter.setUlpProxy(mUlp);
}
};
sendMsg(new MsgSetUlpProxy(*this, ulp));
}
void
GnssAdapter::setUlpProxy(UlpProxyBase* ulp)
{
if (ulp == mUlpProxy) {
//This takes care of the case when double initalization happens
//and we get the same object back for UlpProxyBase . Do nothing
return;
}
LOC_LOGV("%s]: %p", __func__, ulp);
if (NULL == ulp) {
LOC_LOGE("%s]: ulp pointer is NULL", __func__);
ulp = new UlpProxyBase();
}
if (LOC_POSITION_MODE_INVALID != mUlpProxy->mPosMode.mode) {
// need to send this mode and start msg to ULP
ulp->sendFixMode(mUlpProxy->mPosMode);
}
if (mUlpProxy->mFixSet) {
ulp->sendStartFix();
}
delete mUlpProxy;
mUlpProxy = ulp;
}
void
GnssAdapter::addClientCommand(LocationAPI* client, const LocationCallbacks& callbacks)
{
LOC_LOGD("%s]: client %p", __func__, client);
struct MsgAddClient : public LocMsg {
GnssAdapter& mAdapter;
LocationAPI* mClient;
const LocationCallbacks mCallbacks;
inline MsgAddClient(GnssAdapter& adapter,
LocationAPI* client,
const LocationCallbacks& callbacks) :
LocMsg(),
mAdapter(adapter),
mClient(client),
mCallbacks(callbacks) {}
inline virtual void proc() const {
mAdapter.saveClient(mClient, mCallbacks);
}
};
sendMsg(new MsgAddClient(*this, client, callbacks));
}
void
GnssAdapter::removeClientCommand(LocationAPI* client)
{
LOC_LOGD("%s]: client %p", __func__, client);
struct MsgRemoveClient : public LocMsg {
GnssAdapter& mAdapter;
LocationAPI* mClient;
inline MsgRemoveClient(GnssAdapter& adapter,
LocationAPI* client) :
LocMsg(),
mAdapter(adapter),
mClient(client) {}
inline virtual void proc() const {
mAdapter.stopClientSessions(mClient);
mAdapter.eraseClient(mClient);
}
};
sendMsg(new MsgRemoveClient(*this, client));
}
void
GnssAdapter::stopClientSessions(LocationAPI* client)
{
LOC_LOGD("%s]: client %p", __func__, client);
for (auto it = mTrackingSessions.begin(); it != mTrackingSessions.end();) {
if (client == it->first.client) {
LocationError err = stopTrackingMultiplex(it->first.client, it->first.id);
if (LOCATION_ERROR_SUCCESS == err) {
it = mTrackingSessions.erase(it);
continue;
}
}
++it; // increment only when not erasing an iterator
}
}
void
GnssAdapter::updateClientsEventMask()
{
LOC_API_ADAPTER_EVENT_MASK_T mask = 0;
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (it->second.trackingCb != nullptr) {
mask |= LOC_API_ADAPTER_BIT_PARSED_POSITION_REPORT;
}
if (it->second.gnssNiCb != nullptr) {
mask |= LOC_API_ADAPTER_BIT_NI_NOTIFY_VERIFY_REQUEST;
}
if (it->second.gnssSvCb != nullptr) {
mask |= LOC_API_ADAPTER_BIT_SATELLITE_REPORT;
}
if (it->second.gnssNmeaCb != nullptr &&
NMEA_PROVIDER_MP == ContextBase::mGps_conf.NMEA_PROVIDER) {
mask |= LOC_API_ADAPTER_BIT_NMEA_1HZ_REPORT;
}
if (it->second.gnssMeasurementsCb != nullptr) {
mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT;
}
}
/*
** For Automotive use cases we need to enable MEASUREMENT and POLY
** when QDR is enabled
*/
if(1 == ContextBase::mGps_conf.EXTERNAL_DR_ENABLED) {
mask |= LOC_API_ADAPTER_BIT_GNSS_MEASUREMENT;
mask |= LOC_API_ADAPTER_BIT_GNSS_SV_POLYNOMIAL_REPORT;
LOC_LOGD("%s]: Auto usecase, Enable MEAS/POLY - mask 0x%x", __func__, mask);
}
updateEvtMask(mask, LOC_REGISTRATION_MASK_SET);
}
void
GnssAdapter::handleEngineUpEvent()
{
struct MsgRestartSessions : public LocMsg {
GnssAdapter& mAdapter;
inline MsgRestartSessions(GnssAdapter& adapter) :
LocMsg(),
mAdapter(adapter) {}
virtual void proc() const {
mAdapter.restartSessions();
}
};
setConfigCommand();
sendMsg(new MsgRestartSessions(*this));
}
void
GnssAdapter::restartSessions()
{
LOC_LOGD("%s]: ", __func__);
if (mTrackingSessions.empty()) {
return;
}
// get the LocationOptions that has the smallest interval, which should be the active one
LocationOptions smallestIntervalOptions = {}; // size is zero until set for the first time
for (auto it = mTrackingSessions.begin(); it != mTrackingSessions.end(); ++it) {
if (0 == smallestIntervalOptions.size || //size of zero means we havent set it yet
it->second.minInterval < smallestIntervalOptions.minInterval) {
smallestIntervalOptions = it->second;
}
}
startTracking(smallestIntervalOptions);
}
void
GnssAdapter::requestCapabilitiesCommand(LocationAPI* client)
{
LOC_LOGD("%s]: ", __func__);
struct MsgRequestCapabilities : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
LocationAPI* mClient;
inline MsgRequestCapabilities(GnssAdapter& adapter,
LocApiBase& api,
LocationAPI* client) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mClient(client) {}
inline virtual void proc() const {
LocationCallbacks callbacks = mAdapter.getClientCallbacks(mClient);
if (callbacks.capabilitiesCb == nullptr) {
LOC_LOGE("%s]: capabilitiesCb is NULL", __func__);
return;
}
LocationCapabilitiesMask mask = {};
// time based tracking always supported
mask |= LOCATION_CAPABILITIES_TIME_BASED_TRACKING_BIT;
if (mApi.isMessageSupported(LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_LOCATION_BATCHING)){
mask |= LOCATION_CAPABILITIES_TIME_BASED_BATCHING_BIT |
LOCATION_CAPABILITIES_DISTANCE_BASED_BATCHING_BIT;
}
if (mApi.isMessageSupported(LOC_API_ADAPTER_MESSAGE_DISTANCE_BASE_TRACKING)) {
mask |= LOCATION_CAPABILITIES_DISTANCE_BASED_TRACKING_BIT;
}
// geofence always supported
mask |= LOCATION_CAPABILITIES_GEOFENCE_BIT;
if (mApi.gnssConstellationConfig()) {
mask |= LOCATION_CAPABILITIES_GNSS_MEASUREMENTS_BIT;
}
uint32_t carrierCapabilities = ContextBase::getCarrierCapabilities();
if (carrierCapabilities & LOC_GPS_CAPABILITY_MSB) {
mask |= LOCATION_CAPABILITIES_GNSS_MSB_BIT;
}
if (LOC_GPS_CAPABILITY_MSA & carrierCapabilities) {
mask |= LOCATION_CAPABILITIES_GNSS_MSA_BIT;
}
callbacks.capabilitiesCb(mask);
}
};
sendMsg(new MsgRequestCapabilities(*this, *mLocApi, client));
}
LocationCallbacks
GnssAdapter::getClientCallbacks(LocationAPI* client)
{
LocationCallbacks callbacks = {};
auto it = mClientData.find(client);
if (it != mClientData.end()) {
callbacks = it->second;
}
return callbacks;
}
void
GnssAdapter::saveClient(LocationAPI* client, const LocationCallbacks& callbacks)
{
mClientData[client] = callbacks;
updateClientsEventMask();
}
void
GnssAdapter::eraseClient(LocationAPI* client)
{
auto it = mClientData.find(client);
if (it != mClientData.end()) {
mClientData.erase(it);
}
updateClientsEventMask();
}
bool
GnssAdapter::hasTrackingCallback(LocationAPI* client)
{
auto it = mClientData.find(client);
return (it != mClientData.end() && it->second.trackingCb);
}
bool
GnssAdapter::hasMeasurementsCallback(LocationAPI* client)
{
auto it = mClientData.find(client);
return (it != mClientData.end() && it->second.gnssMeasurementsCb);
}
bool
GnssAdapter::isTrackingSession(LocationAPI* client, uint32_t sessionId)
{
LocationSessionKey key(client, sessionId);
return (mTrackingSessions.find(key) != mTrackingSessions.end());
}
void
GnssAdapter::saveTrackingSession(LocationAPI* client, uint32_t sessionId,
const LocationOptions& options)
{
LocationSessionKey key(client, sessionId);
mTrackingSessions[key] = options;
}
void
GnssAdapter::eraseTrackingSession(LocationAPI* client, uint32_t sessionId)
{
LocationSessionKey key(client, sessionId);
auto it = mTrackingSessions.find(key);
if (it != mTrackingSessions.end()) {
mTrackingSessions.erase(it);
}
}
void
GnssAdapter::reportResponse(LocationAPI* client, LocationError err, uint32_t sessionId)
{
LOC_LOGD("%s]: client %p id %u err %u", __func__, client, sessionId, err);
auto it = mClientData.find(client);
if (it != mClientData.end() &&
it->second.responseCb != nullptr) {
it->second.responseCb(err, sessionId);
} else {
LOC_LOGW("%s]: client %p id %u not found in data", __func__, client, sessionId);
}
}
void
GnssAdapter::reportResponse(LocationError err, uint32_t sessionId)
{
LOC_LOGD("%s]: id %u err %u", __func__, sessionId, err);
if (mControlCallbacks.size > 0 && mControlCallbacks.responseCb != nullptr) {
mControlCallbacks.responseCb(err, sessionId);
} else {
LOC_LOGW("%s]: control client response callback not found", __func__);
}
}
void
GnssAdapter::reportResponse(size_t count, LocationError* errs, uint32_t* ids)
{
IF_LOC_LOGD {
std::string idsString = "[";
std::string errsString = "[";
if (NULL != ids && NULL != errs) {
for (size_t i=0; i < count; ++i) {
idsString += std::to_string(ids[i]) + " ";
errsString += std::to_string(errs[i]) + " ";
}
}
idsString += "]";
errsString += "]";
LOC_LOGD("%s]: ids %s errs %s",
__func__, idsString.c_str(), errsString.c_str());
}
if (mControlCallbacks.size > 0 && mControlCallbacks.collectiveResponseCb != nullptr) {
mControlCallbacks.collectiveResponseCb(count, errs, ids);
} else {
LOC_LOGW("%s]: control client callback not found", __func__);
}
}
uint32_t
GnssAdapter::startTrackingCommand(LocationAPI* client, LocationOptions& options)
{
uint32_t sessionId = generateSessionId();
LOC_LOGD("%s]: client %p id %u minInterval %u mode %u",
__func__, client, sessionId, options.minInterval, options.mode);
struct MsgStartTracking : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
LocationAPI* mClient;
uint32_t mSessionId;
LocationOptions mOptions;
inline MsgStartTracking(GnssAdapter& adapter,
LocApiBase& api,
LocationAPI* client,
uint32_t sessionId,
LocationOptions options) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mClient(client),
mSessionId(sessionId),
mOptions(options) {}
inline virtual void proc() const {
LocationError err = LOCATION_ERROR_SUCCESS;
if (!mAdapter.hasTrackingCallback(mClient) &&
!mAdapter.hasMeasurementsCallback(mClient)) {
err = LOCATION_ERROR_CALLBACK_MISSING;
} else if (0 == mOptions.size) {
err = LOCATION_ERROR_INVALID_PARAMETER;
} else {
// Api doesn't support multiple clients for time based tracking, so mutiplex
err = mAdapter.startTrackingMultiplex(mOptions);
if (LOCATION_ERROR_SUCCESS == err) {
mAdapter.saveTrackingSession(mClient, mSessionId, mOptions);
}
}
mAdapter.reportResponse(mClient, err, mSessionId);
}
};
sendMsg(new MsgStartTracking(*this, *mLocApi, client, sessionId, options));
return sessionId;
}
LocationError
GnssAdapter::startTrackingMultiplex(const LocationOptions& options)
{
LocationError err = LOCATION_ERROR_SUCCESS;
bool updateTrackingSession = false;
if (mTrackingSessions.empty()) {
err = startTracking(options);
} else {
// get the LocationOptions that has the smallest interval, which should be the active one
LocationOptions smallestIntervalOptions = {}; // size is zero until set for the first time
for (auto it = mTrackingSessions.begin(); it != mTrackingSessions.end(); ++it) {
if (0 == smallestIntervalOptions.size || //size of zero means we havent set it yet
it->second.minInterval < smallestIntervalOptions.minInterval) {
smallestIntervalOptions = it->second;
}
}
// if new session's minInterval is smaller than any in other sessions
if (options.minInterval < smallestIntervalOptions.minInterval) {
// restart time based tracking with new options
err = startTracking(options);
}
}
return err;
}
LocationError
GnssAdapter::startTracking(const LocationOptions& options)
{
LocationError err = LOCATION_ERROR_SUCCESS;
LocPosMode locPosMode = {};
convertOptions(locPosMode, options);
if (!mUlpProxy->sendFixMode(locPosMode)) {
// do nothing
}
if (!mUlpProxy->sendStartFix()) {
loc_api_adapter_err apiErr = mLocApi->startFix(locPosMode);
if (LOC_API_ADAPTER_ERR_SUCCESS == apiErr) {
err = LOCATION_ERROR_SUCCESS;
// save supl mode, which is used for NMEA generation
setSuplMode(options.mode);
} else {
err = LOCATION_ERROR_GENERAL_FAILURE;
}
}
return err;
}
void
GnssAdapter::setPositionModeCommand(LocPosMode& locPosMode)
{
LOC_LOGD("%s]: min_interval %u mode %u",
__func__, locPosMode.min_interval, locPosMode.mode);
struct MsgSetPositionMode : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
LocPosMode mLocPosMode;
inline MsgSetPositionMode(GnssAdapter& adapter,
LocApiBase& api,
LocPosMode& locPosMode) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mLocPosMode(locPosMode) {}
inline virtual void proc() const {
// saves the mode in adapter to be used when startTrackingCommand is called from ULP
mAdapter.setUlpPositionMode(mLocPosMode);
mApi.setPositionMode(mLocPosMode);
}
};
sendMsg(new MsgSetPositionMode(*this, *mLocApi, locPosMode));
}
void
GnssAdapter::startTrackingCommand()
{
LOC_LOGD("%s]: ", __func__);
struct MsgStartTracking : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
inline MsgStartTracking(GnssAdapter& adapter,
LocApiBase& api) :
LocMsg(),
mAdapter(adapter),
mApi(api) {}
inline virtual void proc() const {
// we get this call from ULP, so just call LocApi without multiplexing because
// ulp would be doing the multiplexing for us if it is present
LocPosMode& ulpPositionMode = mAdapter.getUlpPositionMode();
mApi.startFix(ulpPositionMode);
// save supl mode, which is used for NMEA generation
mAdapter.setSuplMode((GnssSuplMode)ulpPositionMode.mode);
}
};
sendMsg(new MsgStartTracking(*this, *mLocApi));
}
void
GnssAdapter::updateTrackingOptionsCommand(LocationAPI* client, uint32_t id,
LocationOptions& options)
{
LOC_LOGD("%s]: client %p id %u minInterval %u mode %u",
__func__, client, id, options.minInterval, options.mode);
struct MsgUpdateTracking : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
LocationAPI* mClient;
uint32_t mSessionId;
LocationOptions mOptions;
inline MsgUpdateTracking(GnssAdapter& adapter,
LocApiBase& api,
LocationAPI* client,
uint32_t sessionId,
LocationOptions options) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mClient(client),
mSessionId(sessionId),
mOptions(options) {}
inline virtual void proc() const {
if (mAdapter.isTrackingSession(mClient, mSessionId)) {
LocationError err = LOCATION_ERROR_SUCCESS;
if (0 == mOptions.size) {
err = LOCATION_ERROR_INVALID_PARAMETER;
} else {
// Api doesn't support multiple clients for time based tracking, so mutiplex
err = mAdapter.startTrackingMultiplex(mOptions);
if (LOCATION_ERROR_SUCCESS == err) {
mAdapter.saveTrackingSession(mClient, mSessionId, mOptions);
}
}
mAdapter.reportResponse(mClient, err, mSessionId);
}
// we do not reportResponse for the case where there is no existing tracking session
// for the client and id being used, since updateTrackingCommand can be sent to both
// GnssAdapter & FlpAdapter by LocationAPI and we want to avoid incorrect error response
}
};
sendMsg(new MsgUpdateTracking(*this, *mLocApi, client, id, options));
}
void
GnssAdapter::stopTrackingCommand(LocationAPI* client, uint32_t id)
{
LOC_LOGD("%s]: client %p id %u", __func__, client, id);
struct MsgStopTracking : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
LocationAPI* mClient;
uint32_t mSessionId;
inline MsgStopTracking(GnssAdapter& adapter,
LocApiBase& api,
LocationAPI* client,
uint32_t sessionId) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mClient(client),
mSessionId(sessionId) {}
inline virtual void proc() const {
if (mAdapter.isTrackingSession(mClient, mSessionId)) {
LocationError err = LOCATION_ERROR_SUCCESS;
// Api doesn't support multiple clients for time based tracking, so mutiplex
err = mAdapter.stopTrackingMultiplex(mClient, mSessionId);
if (LOCATION_ERROR_SUCCESS == err) {
mAdapter.eraseTrackingSession(mClient, mSessionId);
}
mAdapter.reportResponse(mClient, err, mSessionId);
}
// we do not reportResponse for the case where there is no existing tracking session
// for the client and id being used, since stopTrackingCommand can be sent to both
// GnssAdapter & FlpAdapter by LocationAPI and we want to avoid incorrect error response
}
};
sendMsg(new MsgStopTracking(*this, *mLocApi, client, id));
}
LocationError
GnssAdapter::stopTrackingMultiplex(LocationAPI* client, uint32_t id)
{
LocationError err = LOCATION_ERROR_SUCCESS;
if (1 == mTrackingSessions.size()) {
err = stopTracking();
} else {
LocationSessionKey key(client, id);
// get the session we are stopping
auto it = mTrackingSessions.find(key);
if (it != mTrackingSessions.end()) {
// find the next smallest interval, other than the session we are stopping
LocationOptions smallestIntervalOptions; // size will be zero until set for the first time
for (auto it2 = mTrackingSessions.begin(); it2 != mTrackingSessions.end(); ++it2) {
// if session is not the one we are stopping and either smallest interval is not set
// or there is a new smallest interval, then set the new smallest interval
if (it2->first != key && (0 == smallestIntervalOptions.size ||
it2->second.minInterval < smallestIntervalOptions.minInterval)) {
smallestIntervalOptions = it2->second;
}
}
// if session we are stopping has smaller interval then next smallest
if (it->second.minInterval < smallestIntervalOptions.minInterval) {
// restart time based tracking with next smallest interval
err = startTracking(smallestIntervalOptions);
}
}
}
return err;
}
LocationError
GnssAdapter::stopTracking()
{
LocationError err = LOCATION_ERROR_SUCCESS;
if (!mUlpProxy->sendStopFix()) {
loc_api_adapter_err apiErr = mLocApi->stopFix();
if (LOC_API_ADAPTER_ERR_SUCCESS == apiErr) {
err = LOCATION_ERROR_SUCCESS;
} else {
err = LOCATION_ERROR_GENERAL_FAILURE;
}
}
return err;
}
void
GnssAdapter::stopTrackingCommand()
{
LOC_LOGD("%s]: ", __func__);
struct MsgStopTracking : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
inline MsgStopTracking(GnssAdapter& adapter,
LocApiBase& api) :
LocMsg(),
mAdapter(adapter),
mApi(api) {}
inline virtual void proc() const {
// clear the position mode
LocPosMode mLocPosMode = {};
mLocPosMode.mode = LOC_POSITION_MODE_INVALID;
mAdapter.setUlpPositionMode(mLocPosMode);
// don't need to multiplex because ULP will do that for us if it is present
mApi.stopFix();
}
};
sendMsg(new MsgStopTracking(*this, *mLocApi));
}
void
GnssAdapter::getZppCommand()
{
LOC_LOGD("%s]: ", __func__);
struct MsgGetZpp : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
inline MsgGetZpp(GnssAdapter& adapter,
LocApiBase& api) :
LocMsg(),
mAdapter(adapter),
mApi(api) {}
inline virtual void proc() const {
UlpLocation location = {};
LocPosTechMask techMask = LOC_POS_TECH_MASK_DEFAULT;
GpsLocationExtended locationExtended = {};
locationExtended.size = sizeof(locationExtended);
mApi.getBestAvailableZppFix(location.gpsLocation, techMask);
//Mark the location source as from ZPP
location.gpsLocation.flags |= LOCATION_HAS_SOURCE_INFO;
location.position_source = ULP_LOCATION_IS_FROM_ZPP;
mAdapter.getUlpProxy()->reportPosition(location,
locationExtended,
LOC_SESS_SUCCESS,
techMask);
}
};
sendMsg(new MsgGetZpp(*this, *mLocApi));
}
bool
GnssAdapter::hasNiNotifyCallback(LocationAPI* client)
{
auto it = mClientData.find(client);
return (it != mClientData.end() && it->second.gnssNiCb);
}
void
GnssAdapter::gnssNiResponseCommand(LocationAPI* client,
uint32_t id,
GnssNiResponse response)
{
LOC_LOGD("%s]: client %p id %u response %u", __func__, client, id, response);
struct MsgGnssNiResponse : public LocMsg {
GnssAdapter& mAdapter;
LocationAPI* mClient;
uint32_t mSessionId;
GnssNiResponse mResponse;
inline MsgGnssNiResponse(GnssAdapter& adapter,
LocationAPI* client,
uint32_t sessionId,
GnssNiResponse response) :
LocMsg(),
mAdapter(adapter),
mClient(client),
mSessionId(sessionId),
mResponse(response) {}
inline virtual void proc() const {
NiData& niData = mAdapter.getNiData();
LocationError err = LOCATION_ERROR_SUCCESS;
if (!mAdapter.hasNiNotifyCallback(mClient)) {
err = LOCATION_ERROR_ID_UNKNOWN;
} else {
NiSession* pSession = NULL;
if (mSessionId == niData.sessionEs.reqID &&
NULL != niData.sessionEs.rawRequest) {
pSession = &niData.sessionEs;
// ignore any SUPL NI non-Es session if a SUPL NI ES is accepted
if (mResponse == GNSS_NI_RESPONSE_ACCEPT &&
NULL != niData.session.rawRequest) {
pthread_mutex_lock(&niData.session.tLock);
niData.session.resp = GNSS_NI_RESPONSE_IGNORE;
niData.session.respRecvd = true;
pthread_cond_signal(&niData.session.tCond);
pthread_mutex_unlock(&niData.session.tLock);
}
} else if (mSessionId == niData.session.reqID &&
NULL != niData.session.rawRequest) {
pSession = &niData.session;
}
if (pSession) {
LOC_LOGI("%s]: gnssNiResponseCommand: send user mResponse %u for id %u",
__func__, mResponse, mSessionId);
pthread_mutex_lock(&pSession->tLock);
pSession->resp = mResponse;
pSession->respRecvd = true;
pthread_cond_signal(&pSession->tCond);
pthread_mutex_unlock(&pSession->tLock);
} else {
err = LOCATION_ERROR_ID_UNKNOWN;
LOC_LOGE("%s]: gnssNiResponseCommand: id %u not an active session",
__func__, mSessionId);
}
}
mAdapter.reportResponse(mClient, err, mSessionId);
}
};
sendMsg(new MsgGnssNiResponse(*this, client, id, response));
}
void
GnssAdapter::gnssNiResponseCommand(GnssNiResponse response, void* rawRequest)
{
LOC_LOGD("%s]: response %u", __func__, response);
struct MsgGnssNiResponse : public LocMsg {
LocApiBase& mApi;
const GnssNiResponse mResponse;
const void* mPayload;
inline MsgGnssNiResponse(LocApiBase& api,
const GnssNiResponse response,
const void* rawRequest) :
LocMsg(),
mApi(api),
mResponse(response),
mPayload(rawRequest) {}
inline virtual ~MsgGnssNiResponse() {
// this is a bit weird since mPayload is not
// allocated by this class. But there is no better way.
// mPayload actually won't be NULL here.
free((void*)mPayload);
}
inline virtual void proc() const {
mApi.informNiResponse(mResponse, mPayload);
}
};
sendMsg(new MsgGnssNiResponse(*mLocApi, response, rawRequest));
}
uint32_t
GnssAdapter::enableCommand(LocationTechnologyType techType)
{
uint32_t sessionId = generateSessionId();
LOC_LOGD("%s]: id %u techType %u", __func__, sessionId, techType);
struct MsgEnableGnss : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
ContextBase& mContext;
uint32_t mSessionId;
LocationTechnologyType mTechType;
inline MsgEnableGnss(GnssAdapter& adapter,
LocApiBase& api,
ContextBase& context,
uint32_t sessionId,
LocationTechnologyType techType) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mContext(context),
mSessionId(sessionId),
mTechType(techType) {}
inline virtual void proc() const {
LocationError err = LOCATION_ERROR_SUCCESS;
uint32_t powerVoteId = mAdapter.getPowerVoteId();
if (mTechType != LOCATION_TECHNOLOGY_TYPE_GNSS) {
err = LOCATION_ERROR_INVALID_PARAMETER;
} else if (powerVoteId > 0) {
err = LOCATION_ERROR_ALREADY_STARTED;
} else {
mContext.modemPowerVote(true);
mAdapter.setPowerVoteId(mSessionId);
mApi.setGpsLock(GNSS_CONFIG_GPS_LOCK_NONE);
}
mAdapter.reportResponse(err, mSessionId);
}
};
if (mContext != NULL) {
sendMsg(new MsgEnableGnss(*this, *mLocApi, *mContext, sessionId, techType));
} else {
LOC_LOGE("%s]: Context is NULL", __func__);
}
return sessionId;
}
void
GnssAdapter::disableCommand(uint32_t id)
{
LOC_LOGD("%s]: id %u", __func__, id);
struct MsgDisableGnss : public LocMsg {
GnssAdapter& mAdapter;
LocApiBase& mApi;
ContextBase& mContext;
uint32_t mSessionId;
inline MsgDisableGnss(GnssAdapter& adapter,
LocApiBase& api,
ContextBase& context,
uint32_t sessionId) :
LocMsg(),
mAdapter(adapter),
mApi(api),
mContext(context),
mSessionId(sessionId) {}
inline virtual void proc() const {
LocationError err = LOCATION_ERROR_SUCCESS;
uint32_t powerVoteId = mAdapter.getPowerVoteId();
if (powerVoteId != mSessionId) {
err = LOCATION_ERROR_ID_UNKNOWN;
} else {
mContext.modemPowerVote(false);
mAdapter.setPowerVoteId(0);
mApi.setGpsLock(mAdapter.convertGpsLock(ContextBase::mGps_conf.GPS_LOCK));
}
mAdapter.reportResponse(err, mSessionId);
}
};
if (mContext != NULL) {
sendMsg(new MsgDisableGnss(*this, *mLocApi, *mContext, id));
}
}
void
GnssAdapter::reportPositionEvent(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
enum loc_sess_status status,
LocPosTechMask techMask,
bool fromUlp)
{
LOC_LOGD("%s]: fromUlp %u status %u", __func__, fromUlp, status);
// if this event is not called from ULP, then try to call into ULP and return if successfull
if (!fromUlp) {
if (mUlpProxy->reportPosition(ulpLocation, locationExtended,
status, techMask)) {
return;
}
}
struct MsgReportPosition : public LocMsg {
GnssAdapter& mAdapter;
const UlpLocation mUlpLocation;
const GpsLocationExtended mLocationExtended;
loc_sess_status mStatus;
LocPosTechMask mTechMask;
inline MsgReportPosition(GnssAdapter& adapter,
const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
loc_sess_status status,
LocPosTechMask techMask) :
LocMsg(),
mAdapter(adapter),
mUlpLocation(ulpLocation),
mLocationExtended(locationExtended),
mStatus(status),
mTechMask(techMask) {}
inline virtual void proc() const {
mAdapter.reportPosition(mUlpLocation, mLocationExtended, mStatus, mTechMask);
}
};
sendMsg(new MsgReportPosition(*this, ulpLocation, locationExtended, status, techMask));
}
void
GnssAdapter::reportPosition(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
enum loc_sess_status status,
LocPosTechMask techMask)
{
bool reported = false;
if (LOC_SESS_FAILURE == status) {
Location invalidLocation = {};
invalidLocation.size = sizeof(Location);
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.trackingCb) {
it->second.trackingCb(invalidLocation);
}
}
reported = true;
}
// what's in the else if is... (line by line)
// 1. this is a final fix; and
// 1.1 it is a Satellite fix; or
// 1.2 it is a sensor fix
// 2. (must be intermediate fix... implicit)
// 2.1 we accepte intermediate; and
// 2.2 it is NOT the case that
// 2.2.1 there is inaccuracy; and
// 2.2.2 we care about inaccuracy; and
// 2.2.3 the inaccuracy exceeds our tolerance
else if ((LOC_SESS_SUCCESS == status &&
((LOC_POS_TECH_MASK_SATELLITE |
LOC_POS_TECH_MASK_SENSORS |
LOC_POS_TECH_MASK_HYBRID) &
techMask)) ||
(LOC_SESS_INTERMEDIATE == ContextBase::mGps_conf.INTERMEDIATE_POS &&
!((ulpLocation.gpsLocation.flags &
LOC_GPS_LOCATION_HAS_ACCURACY) &&
(ContextBase::mGps_conf.ACCURACY_THRES != 0) &&
(ulpLocation.gpsLocation.accuracy >
ContextBase::mGps_conf.ACCURACY_THRES)))) {
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_GNSS_SV_USED_DATA) {
mGnssSvIdUsedInPosAvail = true;
mGnssSvIdUsedInPosition = locationExtended.gnss_sv_used_ids;
}
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.trackingCb) {
Location location = {};
convertLocation(location, ulpLocation.gpsLocation, techMask);
it->second.trackingCb(location);
}
if (nullptr != it->second.gnssLocationInfoCb) {
GnssLocationInfoNotification locationInfo = {};
convertLocationInfo(locationInfo, locationExtended);
it->second.gnssLocationInfoCb(locationInfo);
}
}
reported = true;
}
if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTrackingSessions.empty()) {
if (reported && status != LOC_SESS_FAILURE) {
generateNmea(ulpLocation, locationExtended);
} else {
generateNmeaBlank();
}
}
// Free the allocated memory for rawData
UlpLocation* gp = (UlpLocation*)&(ulpLocation);
if (gp != NULL && gp->rawData != NULL)
{
delete (char*)gp->rawData;
gp->rawData = NULL;
gp->rawDataSize = 0;
}
}
void
GnssAdapter::reportSvEvent(const GnssSvNotification& svNotify,
bool fromUlp)
{
LOC_LOGD("%s]: fromUlp %u", __func__, fromUlp);
// if this event is not called from ULP, then try to call into ULP and return if successfull
if (!fromUlp) {
if (mUlpProxy->reportSv(svNotify)) {
return;
}
}
struct MsgReportSv : public LocMsg {
GnssAdapter& mAdapter;
const GnssSvNotification mSvNotify;
inline MsgReportSv(GnssAdapter& adapter,
const GnssSvNotification& svNotify) :
LocMsg(),
mAdapter(adapter),
mSvNotify(svNotify) {}
inline virtual void proc() const {
mAdapter.reportSv((GnssSvNotification&)mSvNotify);
}
};
sendMsg(new MsgReportSv(*this, svNotify));
}
void
GnssAdapter::reportSv(GnssSvNotification& svNotify)
{
if (mGnssSvIdUsedInPosAvail) {
int numSv = svNotify.count;
int16_t gnssSvId = 0;
int prnMin = 0;
uint64_t svUsedIdMask = 0;
for (int i=0; i < numSv; i++) {
gnssSvId = svNotify.gnssSvs[i].svId;
if (gnssSvId <= GPS_SV_PRN_MAX) {
svUsedIdMask = mGnssSvIdUsedInPosition.gps_sv_used_ids_mask;
prnMin = GPS_SV_PRN_MIN;
} else if ((gnssSvId >= GLO_SV_PRN_MIN) && (gnssSvId <= GLO_SV_PRN_MAX)) {
svUsedIdMask = mGnssSvIdUsedInPosition.glo_sv_used_ids_mask;
prnMin = GLO_SV_PRN_MIN;
} else if ((gnssSvId >= BDS_SV_PRN_MIN) && (gnssSvId <= BDS_SV_PRN_MAX)) {
svUsedIdMask = mGnssSvIdUsedInPosition.bds_sv_used_ids_mask;
prnMin = BDS_SV_PRN_MIN;
} else if ((gnssSvId >= GAL_SV_PRN_MIN) && (gnssSvId <= GAL_SV_PRN_MAX)) {
svUsedIdMask = mGnssSvIdUsedInPosition.gal_sv_used_ids_mask;
prnMin = GAL_SV_PRN_MIN;
}
// If SV ID was used in previous position fix, then set USED_IN_FIX
// flag, else clear the USED_IN_FIX flag.
if (svUsedIdMask & (1 << (gnssSvId - prnMin))) {
svNotify.gnssSvs[i].gnssSvOptionsMask |= GNSS_SV_OPTIONS_USED_IN_FIX_BIT;
} else {
svNotify.gnssSvs[i].gnssSvOptionsMask &= ~GNSS_SV_OPTIONS_USED_IN_FIX_BIT;
}
}
}
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.gnssSvCb) {
it->second.gnssSvCb(svNotify);
}
}
if (NMEA_PROVIDER_AP == ContextBase::mGps_conf.NMEA_PROVIDER && !mTrackingSessions.empty()) {
generateNmea(svNotify);
}
mGnssSvIdUsedInPosAvail = false;
}
void
GnssAdapter::reportNmeaEvent(const char* nmea, size_t length, bool fromUlp)
{
//LOC_LOGD("%s]: fromUlp %u", __func__, fromUlp);
// if this event is not called from ULP, then try to call into ULP and return if successfull
if (!fromUlp) {
if (mUlpProxy->reportNmea(nmea, length)) {
return;
}
}
struct MsgReportNmea : public LocMsg {
GnssAdapter& mAdapter;
const char* mNmea;
size_t mLength;
inline MsgReportNmea(GnssAdapter& adapter,
const char* nmea,
size_t length) :
LocMsg(),
mAdapter(adapter),
mNmea(new char[length]),
mLength(length) {
memcpy((void*)mNmea, (void*)nmea, length);
}
inline virtual ~MsgReportNmea()
{
delete[] mNmea;
}
inline virtual void proc() const {
mAdapter.reportNmea(mNmea, mLength);
}
};
sendMsg(new MsgReportNmea(*this, nmea, length));
}
void
GnssAdapter::reportNmea(const char* nmea, size_t length)
{
GnssNmeaNotification nmeaNotification = {};
nmeaNotification.size = sizeof(GnssNmeaNotification);
struct timeval tv;
gettimeofday(&tv, (struct timezone *) NULL);
int64_t now = tv.tv_sec * 1000LL + tv.tv_usec / 1000;
nmeaNotification.timestamp = now;
nmeaNotification.nmea = nmea;
nmeaNotification.length = length;
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.gnssNmeaCb) {
it->second.gnssNmeaCb(nmeaNotification);
}
}
}
bool
GnssAdapter::requestNiNotifyEvent(const GnssNiNotification &notify, const void* data)
{
LOC_LOGI("%s]: notif_type: %d, timeout: %d, default_resp: %d"
"requestor_id: %s (encoding: %d) text: %s text (encoding: %d) extras: %s",
__func__, notify.type, notify.timeout, notify.timeoutResponse,
notify.requestor, notify.requestorEncoding,
notify.message, notify.messageEncoding, notify.extras);
struct MsgReportNiNotify : public LocMsg {
GnssAdapter& mAdapter;
const GnssNiNotification mNotify;
const void* mData;
inline MsgReportNiNotify(GnssAdapter& adapter,
const GnssNiNotification& notify,
const void* data) :
LocMsg(),
mAdapter(adapter),
mNotify(notify),
mData(data) {}
inline virtual void proc() const {
mAdapter.requestNiNotify(mNotify, mData);
}
};
sendMsg(new MsgReportNiNotify(*this, notify, data));
return true;
}
static void* niThreadProc(void *args)
{
NiSession* pSession = (NiSession*)args;
int rc = 0; /* return code from pthread calls */
struct timeval present_time;
struct timespec expire_time;
pthread_mutex_lock(&pSession->tLock);
/* Calculate absolute expire time */
gettimeofday(&present_time, NULL);
expire_time.tv_sec = present_time.tv_sec + pSession->respTimeLeft;
expire_time.tv_nsec = present_time.tv_usec * 1000;
LOC_LOGD("%s]: time out set for abs time %ld with delay %d sec",
__func__, (long)expire_time.tv_sec, pSession->respTimeLeft);
while (!pSession->respRecvd) {
rc = pthread_cond_timedwait(&pSession->tCond,
&pSession->tLock,
&expire_time);
if (rc == ETIMEDOUT) {
pSession->resp = GNSS_NI_RESPONSE_NO_RESPONSE;
LOC_LOGD("%s]: time out after valting for specified time. Ret Val %d",
__func__, rc);
break;
}
}
LOC_LOGD("%s]: Java layer has sent us a user response and return value from "
"pthread_cond_timedwait = %d pSession->resp is %u", __func__, rc, pSession->resp);
pSession->respRecvd = false; /* Reset the user response flag for the next session*/
// adding this check to support modem restart, in which case, we need the thread
// to exit without calling sending data. We made sure that rawRequest is NULL in
// loc_eng_ni_reset_on_engine_restart()
GnssAdapter* adapter = pSession->adapter;
GnssNiResponse resp;
void* rawRequest = NULL;
bool sendResponse = false;
if (NULL != pSession->rawRequest) {
if (pSession->resp != GNSS_NI_RESPONSE_IGNORE) {
resp = pSession->resp;
rawRequest = pSession->rawRequest;
sendResponse = true;
} else {
free(pSession->rawRequest);
}
pSession->rawRequest = NULL;
}
pthread_mutex_unlock(&pSession->tLock);
pSession->respTimeLeft = 0;
pSession->reqID = 0;
if (sendResponse) {
adapter->gnssNiResponseCommand(resp, rawRequest);
}
return NULL;
}
bool
GnssAdapter::requestNiNotify(const GnssNiNotification& notify, const void* data)
{
NiSession* pSession = NULL;
gnssNiCallback gnssNiCb = nullptr;
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.gnssNiCb) {
gnssNiCb = it->second.gnssNiCb;
break;
}
}
if (nullptr == gnssNiCb) {
EXIT_LOG(%s, "no clients with gnssNiCb.");
return false;
}
if (notify.type == GNSS_NI_TYPE_EMERGENCY_SUPL) {
if (NULL != mNiData.sessionEs.rawRequest) {
LOC_LOGI("%s]: supl es NI in progress, new supl es NI ignored, type: %d",
__func__, notify.type);
if (NULL != data) {
free((void*)data);
}
} else {
pSession = &mNiData.sessionEs;
}
} else {
if (NULL != mNiData.session.rawRequest ||
NULL != mNiData.sessionEs.rawRequest) {
LOC_LOGI("%s]: supl NI in progress, new supl NI ignored, type: %d",
__func__, notify.type);
if (NULL != data) {
free((void*)data);
}
} else {
pSession = &mNiData.session;
}
}
if (pSession) {
/* Save request */
pSession->rawRequest = (void*)data;
pSession->reqID = ++mNiData.reqIDCounter;
pSession->adapter = this;
int sessionId = pSession->reqID;
/* For robustness, spawn a thread at this point to timeout to clear up the notification
* status, even though the OEM layer in java does not do so.
**/
pSession->respTimeLeft =
5 + (notify.timeout != 0 ? notify.timeout : LOC_NI_NO_RESPONSE_TIME);
int rc = 0;
rc = pthread_create(&pSession->thread, NULL, niThreadProc, pSession);
if (rc) {
LOC_LOGE("%s]: Loc NI thread is not created.", __func__);
}
rc = pthread_detach(pSession->thread);
if (rc) {
LOC_LOGE("%s]: Loc NI thread is not detached.", __func__);
}
if (nullptr != gnssNiCb) {
gnssNiCb(sessionId, notify);
}
}
return true;
}
void
GnssAdapter::reportGnssMeasurementDataEvent(const GnssMeasurementsNotification& measurementsNotify)
{
LOC_LOGD("%s]: ", __func__);
struct MsgReportGnssMeasurementData : public LocMsg {
GnssAdapter& mAdapter;
const GnssMeasurementsNotification mMeasurementsNotify;
inline MsgReportGnssMeasurementData(GnssAdapter& adapter,
const GnssMeasurementsNotification& measurementsNotify) :
LocMsg(),
mAdapter(adapter),
mMeasurementsNotify(measurementsNotify) {}
inline virtual void proc() const {
mAdapter.reportGnssMeasurementData(mMeasurementsNotify);
}
};
sendMsg(new MsgReportGnssMeasurementData(*this, measurementsNotify));
}
void
GnssAdapter::reportGnssMeasurementData(const GnssMeasurementsNotification& measurementsNotify)
{
for (auto it=mClientData.begin(); it != mClientData.end(); ++it) {
if (nullptr != it->second.gnssMeasurementsCb) {
it->second.gnssMeasurementsCb(measurementsNotify);
}
}
}
void
GnssAdapter::reportSvMeasurementEvent(GnssSvMeasurementSet &svMeasurementSet)
{
LOC_LOGD("%s]: ", __func__);
// We send SvMeasurementSet to AmtProxy/ULPProxy to be forwarded as necessary.
mUlpProxy->reportSvMeasurement(svMeasurementSet);
}
void
GnssAdapter::reportSvPolynomialEvent(GnssSvPolynomial &svPolynomial)
{
LOC_LOGD("%s]: ", __func__);
// We send SvMeasurementSet to AmtProxy/ULPProxy to be forwarded as necessary.
mUlpProxy->reportSvPolynomial(svPolynomial);
}
int
GnssAdapter::nmeaPutChecksum(char *nmea, size_t maxSize)
{
uint8_t checksum = 0;
int length = 0;
nmea++; //skip the $
while (*nmea != '\0') {
checksum ^= *nmea++;
length++;
}
// length now contains nmea sentence string length not including $ sign.
int checksumLength = snprintf(nmea,(maxSize-length-1),"*%02X\r\n", checksum);
// total length of nmea sentence is length of nmea sentence inc $ sign plus
// length of checksum (+1 is to cover the $ character in the length).
return (length + checksumLength + 1);
}
void
GnssAdapter::generateNmea(const GnssSvNotification& svNotify)
{
char sentence[NMEA_SENTENCE_MAX_LENGTH] = {0};
// ------$GPGSV------
NmeaSvMeta gpsSvMeta =
{GNSS_SV_TYPE_GPS, "GP", 0, 0};
generateNmeaGSV(svNotify, gpsSvMeta, sentence, sizeof(sentence));
// ------$GLGSV------
NmeaSvMeta gloSvMeta =
{GNSS_SV_TYPE_GLONASS, "GL", 0, GLONASS_SV_ID_OFFSET};
generateNmeaGSV(svNotify, gloSvMeta, sentence, sizeof(sentence));
// ------$GAGSV------
NmeaSvMeta galSvMeta =
{GNSS_SV_TYPE_GALILEO, "GA", 0, 0};
generateNmeaGSV(svNotify, galSvMeta, sentence, sizeof(sentence));
}
void
GnssAdapter::generateNmea(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended)
{
char sentence[NMEA_SENTENCE_MAX_LENGTH] = {0};
time_t utcTime(ulpLocation.gpsLocation.timestamp/1000);
tm * pTm = gmtime(&utcTime);
if (NULL == pTm) {
LOC_LOGE("%s]: gmtime failed", __func__);
return;
}
uint32_t svUsedCount = 0;
uint32_t count = 0;
bool isCombinedFix = (mGnssSvIdUsedInPosition.gps_sv_used_ids_mask ? 1 : 0) +
(mGnssSvIdUsedInPosition.glo_sv_used_ids_mask ? 1 : 0) +
(mGnssSvIdUsedInPosition.gal_sv_used_ids_mask ? 1 : 0) > 1;
NmeaSvMeta gnssSvMeta =
{GNSS_SV_TYPE_GPS, isCombinedFix ? "GN" : "GP",
mGnssSvIdUsedInPosition.gps_sv_used_ids_mask, 0};
// ---$GPGSA/$GNGSA---
NmeaSvMeta gpsSvMeta =
{GNSS_SV_TYPE_GPS, isCombinedFix ? "GN" : "GP",
mGnssSvIdUsedInPosition.gps_sv_used_ids_mask, 0};
count = generateNmeaGSA(locationExtended, gpsSvMeta, sentence, sizeof(sentence));
if (count > 0) {
svUsedCount += count;
gnssSvMeta = gpsSvMeta;
}
// ---$GLGSA/$GNGSA---
NmeaSvMeta gloSvMeta =
{GNSS_SV_TYPE_GLONASS, isCombinedFix ? "GN" : "GL",
mGnssSvIdUsedInPosition.glo_sv_used_ids_mask, GLONASS_SV_ID_OFFSET};
count = generateNmeaGSA(locationExtended, gloSvMeta, sentence, sizeof(sentence));
if (count > 0) {
svUsedCount += count;
gnssSvMeta = gloSvMeta;
}
// ---$GAGSA/$GNGSA---
NmeaSvMeta galSvMeta =
{GNSS_SV_TYPE_GALILEO, isCombinedFix ? "GN" : "GA",
mGnssSvIdUsedInPosition.gal_sv_used_ids_mask, 0};
count = generateNmeaGSA(locationExtended, galSvMeta, sentence, sizeof(sentence));
if (count > 0) {
svUsedCount += count;
gnssSvMeta = galSvMeta;
}
// ---$GPVTG/$GLVTG/$GAVTG/$GNVTG---
generateNmeaVTG(ulpLocation, locationExtended, gnssSvMeta,
sentence, sizeof(sentence));
// ---$GPRMC/$GLRMC/$GARMC/$GNRMC---
generateNmeaRMC(ulpLocation, locationExtended, gnssSvMeta,
*pTm, sentence, sizeof(sentence));
// ---$GPGGA/$GLGGA/$GAGGA/$GNGGA---
generateNmeaGGA(ulpLocation, locationExtended, gnssSvMeta,
*pTm, svUsedCount, sentence, sizeof(sentence));
}
void
GnssAdapter::generateNmeaBlank()
{
char sentence[NMEA_SENTENCE_MAX_LENGTH] = {0};
int length = 0;
strlcpy(sentence, "$GPGSA,A,1,,,,,,,,,,,,,,,", sizeof(sentence));
length = nmeaPutChecksum(sentence, sizeof(sentence));
reportNmeaEvent(sentence, length);
strlcpy(sentence, "$GNGSA,A,1,,,,,,,,,,,,,,,", sizeof(sentence));
length = nmeaPutChecksum(sentence, sizeof(sentence));
reportNmeaEvent(sentence, length);
strlcpy(sentence, "$GPVTG,,T,,M,,N,,K,N", sizeof(sentence));
length = nmeaPutChecksum(sentence, sizeof(sentence));
reportNmeaEvent(sentence, length);
strlcpy(sentence, "$GPRMC,,V,,,,,,,,,,N", sizeof(sentence));
length = nmeaPutChecksum(sentence, sizeof(sentence));
reportNmeaEvent(sentence, length);
strlcpy(sentence, "$GPGGA,,,,,,0,,,,,,,,", sizeof(sentence));
length = nmeaPutChecksum(sentence, sizeof(sentence));
reportNmeaEvent(sentence, length);
}
void
GnssAdapter::generateNmeaGSV(const GnssSvNotification& svNotify, NmeaSvMeta& svMeta,
char* sentence, size_t size)
{
if (!sentence || size == 0) {
LOC_LOGE("%s]: NMEA Error invalid argument.", __func__);
return;
}
char* pMarker = sentence;
int lengthRemaining = size;
int length = 0;
int sentenceCount = 0;
int sentenceNumber = 1;
int svCount = 0;
int sv = 1;
for (sv=1; sv <= svNotify.count; sv++) {
if (svMeta.svType == svNotify.gnssSvs[sv - 1].type) {
// cache the used in fix mask, as it will be needed to send $GPGSA
// during the position report
if (LOC_GNSS_SV_FLAGS_USED_IN_FIX ==
(svNotify.gnssSvs[sv - 1].gnssSvOptionsMask & GNSS_SV_OPTIONS_USED_IN_FIX_BIT)) {
svCount++;
}
}
}
if (svCount == 0) {
// no svs in view, so just send a blank $--GSV sentence
snprintf(sentence, lengthRemaining, "$%sGSV,1,1,0,", svMeta.talker);
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
return;
}
sv = 1;
sentenceNumber = 1;
sentenceCount = svCount / 4 + (svCount % 4 != 0);
while (sentenceNumber <= sentenceCount) {
pMarker = sentence;
lengthRemaining = size;
length = snprintf(pMarker, lengthRemaining, "$%sGSV,%d,%d,%02d",
svMeta.talker, sentenceCount, sentenceNumber, svCount);
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
for (int i=0; (sv <= svNotify.count) && (i < 4); sv++) {
if (svMeta.svType == svNotify.gnssSvs[sv - 1].type) {
length = snprintf(pMarker, lengthRemaining,",%02d,%02d,%03d,",
svNotify.gnssSvs[sv - 1].svId,
(int)(0.5 + svNotify.gnssSvs[sv - 1].elevation), //float to int
(int)(0.5 + svNotify.gnssSvs[sv - 1].azimuth)); //float to int
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (svNotify.gnssSvs[sv - 1].cN0Dbhz > 0) {
length = snprintf(pMarker, lengthRemaining,"%02d",
(int)(0.5 + svNotify.gnssSvs[sv - 1].cN0Dbhz)); //float to int
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
}
i++;
}
}
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
sentenceNumber++;
} //while
}
uint8_t
GnssAdapter::generateNmeaGSA(const GpsLocationExtended& locationExtended,
NmeaSvMeta& svMeta, char* sentence, size_t size)
{
if (!sentence || size == 0) {
LOC_LOGE("%s]: NMEA Error invalid arguments.", __func__);
return 0;
}
char* pMarker = sentence;
int lengthRemaining = size;
int length = 0;
uint8_t svUsedCount = 0;
uint32_t svUsedList[32] = {0};
char fixType = '\0';
uint32_t svIdOffset = svMeta.svIdOffset;
uint32_t mask = svMeta.mask;
for (uint8_t i = 1; mask > 0 && svUsedCount < 32; i++) {
if (mask & 1) {
svUsedList[svUsedCount++] = i + svIdOffset;
}
mask = mask >> 1;
}
if (svUsedCount == 0 && LOC_GNSS_CONSTELLATION_GPS != svMeta.svType) {
return 0;
}
if (svUsedCount == 0) {
fixType = '1'; // no fix
} else if (svUsedCount <= 3) {
fixType = '2'; // 2D fix
} else {
fixType = '3'; // 3D fix
}
// Start printing the sentence
// Format: $--GSA,a,x,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,p.p,h.h,v.v*cc
// a : Mode : A : Automatic, allowed to automatically switch 2D/3D
// x : Fixtype : 1 (no fix), 2 (2D fix), 3 (3D fix)
// xx : 12 SV ID
// p.p : Position DOP (Dilution of Precision)
// h.h : Horizontal DOP
// v.v : Vertical DOP
// cc : Checksum value
length = snprintf(pMarker, lengthRemaining, "$%sGSA,A,%c,", svMeta.talker, fixType);
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);;
return 0;
}
pMarker += length;
lengthRemaining -= length;
// Add first 12 satellite IDs
for (uint8_t i = 0; i < 12; i++) {
if (i < svUsedCount) {
length = snprintf(pMarker, lengthRemaining, "%02d,", svUsedList[i]);
} else {
length = snprintf(pMarker, lengthRemaining, ",");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return 0;
}
pMarker += length;
lengthRemaining -= length;
}
// Add the position/horizontal/vertical DOP values
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_DOP) {
length = snprintf(pMarker, lengthRemaining, "%.1f,%.1f,%.1f",
locationExtended.pdop,
locationExtended.hdop,
locationExtended.vdop);
} else {
length = snprintf(pMarker, lengthRemaining, ",,");
}
/* Sentence is ready, add checksum and broadcast */
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
return svUsedCount;
}
void
GnssAdapter::generateNmeaVTG(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
NmeaSvMeta& svMeta, char* sentence, size_t size)
{
if (!sentence || size == 0) {
LOC_LOGE("%s]: NMEA Error invalid arguments.", __func__);
return;
}
char* pMarker = sentence;
int lengthRemaining = size;
int length = 0;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_BEARING)
{
float magTrack = ulpLocation.gpsLocation.bearing;
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_MAG_DEV)
{
float magTrack = ulpLocation.gpsLocation.bearing - locationExtended.magneticDeviation;
if (magTrack < 0.0)
magTrack += 360.0;
else if (magTrack > 360.0)
magTrack -= 360.0;
}
length = snprintf(pMarker, lengthRemaining, "$%sVTG,%.1lf,T,%.1lf,M,",
svMeta.talker, ulpLocation.gpsLocation.bearing, magTrack);
}
else
{
length = snprintf(pMarker, lengthRemaining, "$%sVTG,,T,,M,", svMeta.talker);
}
if (length < 0 || length >= lengthRemaining)
{
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_SPEED)
{
float speedKnots = ulpLocation.gpsLocation.speed * (3600.0/1852.0);
float speedKmPerHour = ulpLocation.gpsLocation.speed * 3.6;
length = snprintf(pMarker, lengthRemaining, "%.1lf,N,%.1lf,K,", speedKnots, speedKmPerHour);
}
else
{
length = snprintf(pMarker, lengthRemaining, ",N,,K,");
}
if (length < 0 || length >= lengthRemaining)
{
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (!(ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_LAT_LONG))
length = snprintf(pMarker, lengthRemaining, "%c", 'N'); // N means no fix
else if (GNSS_SUPL_MODE_STANDALONE == mSuplMode)
length = snprintf(pMarker, lengthRemaining, "%c", 'A'); // A means autonomous
else
length = snprintf(pMarker, lengthRemaining, "%c", 'D'); // D means differential
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
}
void
GnssAdapter::generateNmeaRMC(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
NmeaSvMeta& svMeta, tm& utcTime,
char* sentence, size_t size)
{
if (!sentence || size == 0) {
LOC_LOGE("NMEA Error invalid arguments.");
return;
}
int utcYear = utcTime.tm_year % 100; // 2 digit year
int utcMonth = utcTime.tm_mon + 1; // tm_mon starts at zero
int utcDay = utcTime.tm_mday;
int utcHours = utcTime.tm_hour;
int utcMinutes = utcTime.tm_min;
int utcSeconds = utcTime.tm_sec;
int utcMSeconds = (ulpLocation.gpsLocation.timestamp)%1000;
char* pMarker = sentence;
int lengthRemaining = size;
int length = 0;
length = snprintf(pMarker, lengthRemaining, "$%sRMC,%02d%02d%02d.%02d,A," ,
svMeta.talker, utcHours, utcMinutes, utcSeconds,utcMSeconds/10);
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_LAT_LONG) {
double latitude = ulpLocation.gpsLocation.latitude;
double longitude = ulpLocation.gpsLocation.longitude;
char latHemisphere;
char lonHemisphere;
double latMinutes;
double lonMinutes;
if (latitude > 0) {
latHemisphere = 'N';
} else {
latHemisphere = 'S';
latitude *= -1.0;
}
if (longitude < 0) {
lonHemisphere = 'W';
longitude *= -1.0;
} else {
lonHemisphere = 'E';
}
latMinutes = fmod(latitude * 60.0 , 60.0);
lonMinutes = fmod(longitude * 60.0 , 60.0);
length = snprintf(pMarker, lengthRemaining, "%02d%09.6lf,%c,%03d%09.6lf,%c,",
(uint8_t)floor(latitude), latMinutes, latHemisphere,
(uint8_t)floor(longitude),lonMinutes, lonHemisphere);
} else {
length = snprintf(pMarker, lengthRemaining,",,,,");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_SPEED) {
float speedKnots = ulpLocation.gpsLocation.speed * (3600.0/1852.0);
length = snprintf(pMarker, lengthRemaining, "%.1lf,", speedKnots);
} else {
length = snprintf(pMarker, lengthRemaining, ",");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_BEARING) {
length = snprintf(pMarker, lengthRemaining, "%.1lf,", ulpLocation.gpsLocation.bearing);
} else {
length = snprintf(pMarker, lengthRemaining, ",");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
length = snprintf(pMarker, lengthRemaining, "%2.2d%2.2d%2.2d,",
utcDay, utcMonth, utcYear);
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_MAG_DEV) {
float magneticVariation = locationExtended.magneticDeviation;
char direction;
if (magneticVariation < 0.0) {
direction = 'W';
magneticVariation *= -1.0;
} else {
direction = 'E';
}
length = snprintf(pMarker, lengthRemaining, "%.1lf,%c,",
magneticVariation, direction);
} else {
length = snprintf(pMarker, lengthRemaining, ",,");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (!(ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_LAT_LONG)) {
length = snprintf(pMarker, lengthRemaining, "%c", 'N'); // N means no fix
} else if (GNSS_SUPL_MODE_STANDALONE == mSuplMode) {
length = snprintf(pMarker, lengthRemaining, "%c", 'A'); // A means autonomous
} else {
length = snprintf(pMarker, lengthRemaining, "%c", 'D'); // D means differential
}
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
}
void
GnssAdapter::generateNmeaGGA(const UlpLocation& ulpLocation,
const GpsLocationExtended& locationExtended,
NmeaSvMeta& svMeta, tm& utcTime, uint32_t svUsedCount,
char* sentence, size_t size)
{
if (!sentence || size == 0) {
LOC_LOGE("NMEA Error invalid arguments.");
return;
}
int utcYear = utcTime.tm_year % 100; // 2 digit year
int utcMonth = utcTime.tm_mon + 1; // tm_mon starts at zero
int utcDay = utcTime.tm_mday;
int utcHours = utcTime.tm_hour;
int utcMinutes = utcTime.tm_min;
int utcSeconds = utcTime.tm_sec;
int utcMSeconds = (ulpLocation.gpsLocation.timestamp)%1000;
char* pMarker = sentence;
int lengthRemaining = size;
int length = 0;
length = snprintf(pMarker, lengthRemaining, "$%sGGA,%02d%02d%02d.%02d," ,
svMeta.talker, utcHours, utcMinutes, utcSeconds, utcMSeconds/10);
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_LAT_LONG) {
double latitude = ulpLocation.gpsLocation.latitude;
double longitude = ulpLocation.gpsLocation.longitude;
char latHemisphere;
char lonHemisphere;
double latMinutes;
double lonMinutes;
if (latitude > 0) {
latHemisphere = 'N';
} else {
latHemisphere = 'S';
latitude *= -1.0;
}
if (longitude < 0) {
lonHemisphere = 'W';
longitude *= -1.0;
} else {
lonHemisphere = 'E';
}
latMinutes = fmod(latitude * 60.0 , 60.0);
lonMinutes = fmod(longitude * 60.0 , 60.0);
length = snprintf(pMarker, lengthRemaining, "%02d%09.6lf,%c,%03d%09.6lf,%c,",
(uint8_t)floor(latitude), latMinutes, latHemisphere,
(uint8_t)floor(longitude),lonMinutes, lonHemisphere);
} else {
length = snprintf(pMarker, lengthRemaining,",,,,");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
char gpsQuality;
if (!(ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_LAT_LONG)) {
gpsQuality = '0'; // 0 means no fix
} else if (GNSS_SUPL_MODE_STANDALONE == mSuplMode) {
gpsQuality = '1'; // 1 means GPS fix
} else {
gpsQuality = '2'; // 2 means DGPS fix
}
// Number of satellites in use, 00-12
if (svUsedCount > MAX_SATELLITES_IN_USE) {
svUsedCount = MAX_SATELLITES_IN_USE;
}
// Add the position/horizontal/vertical DOP values
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_DOP) {
length = snprintf(pMarker, lengthRemaining, "%c,%02d,%.1f,",
gpsQuality, svUsedCount, locationExtended.hdop);
} else {
length = snprintf(pMarker, lengthRemaining, "%c,%02d,,",
gpsQuality, svUsedCount);
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if (locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_ALTITUDE_MEAN_SEA_LEVEL) {
length = snprintf(pMarker, lengthRemaining, "%.1lf,M,",
locationExtended.altitudeMeanSeaLevel);
} else {
length = snprintf(pMarker, lengthRemaining,",,");
}
if (length < 0 || length >= lengthRemaining) {
LOC_LOGE("%s:%d]: NMEA Error in string formatting", __func__, __LINE__);
return;
}
pMarker += length;
lengthRemaining -= length;
if ((ulpLocation.gpsLocation.flags & LOC_GPS_LOCATION_HAS_ALTITUDE) &&
(locationExtended.flags & GPS_LOCATION_EXTENDED_HAS_ALTITUDE_MEAN_SEA_LEVEL)) {
length = snprintf(pMarker, lengthRemaining, "%.1lf,M,,",
ulpLocation.gpsLocation.altitude - locationExtended.altitudeMeanSeaLevel);
} else {
length = snprintf(pMarker, lengthRemaining,",,,");
}
length = nmeaPutChecksum(sentence, size);
reportNmeaEvent(sentence, length);
}
/* INIT LOC AGPS MANAGER */
void GnssAdapter::initAgpsCommand(void* statusV4Cb){
LOC_LOGI("GnssAdapter::initAgpsCommand");
/* Set ATL open/close callbacks */
AgpsAtlOpenStatusCb atlOpenStatusCb =
[this](int handle, int isSuccess, char* apn,
AGpsBearerType bearerType, AGpsExtType agpsType) {
mLocApi->atlOpenStatus(
handle, isSuccess, apn, bearerType, agpsType);
};
AgpsAtlCloseStatusCb atlCloseStatusCb =
[this](int handle, int isSuccess) {
mLocApi->atlCloseStatus(handle, isSuccess);
};
/* Register DS Client APIs */
AgpsDSClientInitFn dsClientInitFn =
[this](bool isDueToSSR) {
return mLocApi->initDataServiceClient(isDueToSSR);
};
AgpsDSClientOpenAndStartDataCallFn dsClientOpenAndStartDataCallFn =
[this] {
return mLocApi->openAndStartDataCall();
};
AgpsDSClientStopDataCallFn dsClientStopDataCallFn =
[this] {
mLocApi->stopDataCall();
};
AgpsDSClientCloseDataCallFn dsClientCloseDataCallFn =
[this] {
mLocApi->closeDataCall();
};
AgpsDSClientReleaseFn dsClientReleaseFn =
[this] {
mLocApi->releaseDataServiceClient();
};
/* Send Msg function */
SendMsgToAdapterMsgQueueFn sendMsgFn =
[this](LocMsg* msg) {
sendMsg(msg);
};
/* Message to initialize AGPS module */
struct AgpsMsgInit: public LocMsg {
AgpsManager* mAgpsManager;
AgpsFrameworkInterface::AgnssStatusIpV4Cb mFrameworkStatusV4Cb;
AgpsAtlOpenStatusCb mAtlOpenStatusCb;
AgpsAtlCloseStatusCb mAtlCloseStatusCb;
AgpsDSClientInitFn mDSClientInitFn;
AgpsDSClientOpenAndStartDataCallFn mDSClientOpenAndStartDataCallFn;
AgpsDSClientStopDataCallFn mDSClientStopDataCallFn;
AgpsDSClientCloseDataCallFn mDSClientCloseDataCallFn;
AgpsDSClientReleaseFn mDSClientReleaseFn;
SendMsgToAdapterMsgQueueFn mSendMsgFn;
inline AgpsMsgInit(AgpsManager* agpsManager,
AgpsFrameworkInterface::AgnssStatusIpV4Cb frameworkStatusV4Cb,
AgpsAtlOpenStatusCb atlOpenStatusCb,
AgpsAtlCloseStatusCb atlCloseStatusCb,
AgpsDSClientInitFn dsClientInitFn,
AgpsDSClientOpenAndStartDataCallFn dsClientOpenAndStartDataCallFn,
AgpsDSClientStopDataCallFn dsClientStopDataCallFn,
AgpsDSClientCloseDataCallFn dsClientCloseDataCallFn,
AgpsDSClientReleaseFn dsClientReleaseFn,
SendMsgToAdapterMsgQueueFn sendMsgFn) :
LocMsg(), mAgpsManager(agpsManager), mFrameworkStatusV4Cb(
frameworkStatusV4Cb), mAtlOpenStatusCb(atlOpenStatusCb), mAtlCloseStatusCb(
atlCloseStatusCb), mDSClientInitFn(dsClientInitFn), mDSClientOpenAndStartDataCallFn(
dsClientOpenAndStartDataCallFn), mDSClientStopDataCallFn(
dsClientStopDataCallFn), mDSClientCloseDataCallFn(
dsClientCloseDataCallFn), mDSClientReleaseFn(
dsClientReleaseFn), mSendMsgFn(sendMsgFn) {
LOC_LOGV("AgpsMsgInit");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgInit::proc()");
mAgpsManager->registerCallbacks(mFrameworkStatusV4Cb, mAtlOpenStatusCb,
mAtlCloseStatusCb, mDSClientInitFn,
mDSClientOpenAndStartDataCallFn, mDSClientStopDataCallFn,
mDSClientCloseDataCallFn, mDSClientReleaseFn, mSendMsgFn);
mAgpsManager->createAgpsStateMachines();
}
};
/* Send message to initialize AGPS Manager */
sendMsg(new AgpsMsgInit(
&mAgpsManager,
(AgpsFrameworkInterface::AgnssStatusIpV4Cb)statusV4Cb,
atlOpenStatusCb, atlCloseStatusCb,
dsClientInitFn, dsClientOpenAndStartDataCallFn,
dsClientStopDataCallFn, dsClientCloseDataCallFn,
dsClientReleaseFn,
sendMsgFn));
}
/* GnssAdapter::requestATL
* Method triggered in QMI thread as part of handling below message:
* eQMI_LOC_SERVER_REQUEST_OPEN_V02
* Triggers the AGPS state machine to setup AGPS call for below WWAN types:
* eQMI_LOC_WWAN_TYPE_INTERNET_V02
* eQMI_LOC_WWAN_TYPE_AGNSS_V02 */
bool GnssAdapter::requestATL(int connHandle, LocAGpsType agpsType){
LOC_LOGI("GnssAdapter::requestATL");
sendMsg( new AgpsMsgRequestATL(
&mAgpsManager, connHandle, (AGpsExtType)agpsType));
return true;
}
/* GnssAdapter::requestSuplES
* Method triggered in QMI thread as part of handling below message:
* eQMI_LOC_SERVER_REQUEST_OPEN_V02
* Triggers the AGPS state machine to setup AGPS call for below WWAN types:
* eQMI_LOC_WWAN_TYPE_AGNSS_EMERGENCY_V02 */
bool GnssAdapter::requestSuplES(int connHandle){
LOC_LOGI("GnssAdapter::requestSuplES");
sendMsg( new AgpsMsgRequestATL(
&mAgpsManager, connHandle, LOC_AGPS_TYPE_SUPL_ES));
return true;
}
/* GnssAdapter::releaseATL
* Method triggered in QMI thread as part of handling below message:
* eQMI_LOC_SERVER_REQUEST_CLOSE_V02
* Triggers teardown of an existing AGPS call */
bool GnssAdapter::releaseATL(int connHandle){
LOC_LOGI("GnssAdapter::releaseATL");
/* Release SUPL/INTERNET/SUPL_ES ATL */
struct AgpsMsgReleaseATL: public LocMsg {
AgpsManager* mAgpsManager;
int mConnHandle;
inline AgpsMsgReleaseATL(AgpsManager* agpsManager, int connHandle) :
LocMsg(), mAgpsManager(agpsManager), mConnHandle(connHandle) {
LOC_LOGV("AgpsMsgReleaseATL");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgReleaseATL::proc()");
mAgpsManager->releaseATL(mConnHandle);
}
};
sendMsg( new AgpsMsgReleaseATL(&mAgpsManager, connHandle));
return true;
}
/* GnssAdapter::reportDataCallOpened
* DS Client data call opened successfully.
* Send message to AGPS Manager to handle. */
bool GnssAdapter::reportDataCallOpened(){
LOC_LOGI("GnssAdapter::reportDataCallOpened");
struct AgpsMsgSuplEsOpened: public LocMsg {
AgpsManager* mAgpsManager;
inline AgpsMsgSuplEsOpened(AgpsManager* agpsManager) :
LocMsg(), mAgpsManager(agpsManager) {
LOC_LOGV("AgpsMsgSuplEsOpened");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgSuplEsOpened::proc()");
mAgpsManager->reportDataCallOpened();
}
};
sendMsg( new AgpsMsgSuplEsOpened(&mAgpsManager));
return true;
}
/* GnssAdapter::reportDataCallClosed
* DS Client data call closed.
* Send message to AGPS Manager to handle. */
bool GnssAdapter::reportDataCallClosed(){
LOC_LOGI("GnssAdapter::reportDataCallClosed");
struct AgpsMsgSuplEsClosed: public LocMsg {
AgpsManager* mAgpsManager;
inline AgpsMsgSuplEsClosed(AgpsManager* agpsManager) :
LocMsg(), mAgpsManager(agpsManager) {
LOC_LOGV("AgpsMsgSuplEsClosed");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgSuplEsClosed::proc()");
mAgpsManager->reportDataCallClosed();
}
};
sendMsg( new AgpsMsgSuplEsClosed(&mAgpsManager));
return true;
}
void GnssAdapter::dataConnOpenCommand(
AGpsExtType agpsType,
const char* apnName, int apnLen, LocApnIpType ipType){
LOC_LOGI("GnssAdapter::frameworkDataConnOpen");
struct AgpsMsgAtlOpenSuccess: public LocMsg {
AgpsManager* mAgpsManager;
AGpsExtType mAgpsType;
char* mApnName;
int mApnLen;
LocApnIpType mIpType;
inline AgpsMsgAtlOpenSuccess(AgpsManager* agpsManager, AGpsExtType agpsType,
const char* apnName, int apnLen, LocApnIpType ipType) :
LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType), mApnName(
new char[apnLen + 1]), mApnLen(apnLen), mIpType(ipType) {
LOC_LOGV("AgpsMsgAtlOpenSuccess");
memcpy(mApnName, apnName, apnLen);
mApnName[apnLen] = 0;
}
inline ~AgpsMsgAtlOpenSuccess() {
delete[] mApnName;
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgAtlOpenSuccess::proc()");
mAgpsManager->reportAtlOpenSuccess(mAgpsType, mApnName, mApnLen,
mIpType);
}
};
sendMsg( new AgpsMsgAtlOpenSuccess(
&mAgpsManager, (AGpsExtType)agpsType, apnName, apnLen, ipType));
}
void GnssAdapter::dataConnClosedCommand(AGpsExtType agpsType){
LOC_LOGI("GnssAdapter::frameworkDataConnClosed");
struct AgpsMsgAtlClosed: public LocMsg {
AgpsManager* mAgpsManager;
AGpsExtType mAgpsType;
inline AgpsMsgAtlClosed(AgpsManager* agpsManager, AGpsExtType agpsType) :
LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) {
LOC_LOGV("AgpsMsgAtlClosed");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgAtlClosed::proc()");
mAgpsManager->reportAtlClosed(mAgpsType);
}
};
sendMsg( new AgpsMsgAtlClosed(&mAgpsManager, (AGpsExtType)agpsType));
}
void GnssAdapter::dataConnFailedCommand(AGpsExtType agpsType){
LOC_LOGI("GnssAdapter::frameworkDataConnFailed");
struct AgpsMsgAtlOpenFailed: public LocMsg {
AgpsManager* mAgpsManager;
AGpsExtType mAgpsType;
inline AgpsMsgAtlOpenFailed(AgpsManager* agpsManager, AGpsExtType agpsType) :
LocMsg(), mAgpsManager(agpsManager), mAgpsType(agpsType) {
LOC_LOGV("AgpsMsgAtlOpenFailed");
}
inline virtual void proc() const {
LOC_LOGV("AgpsMsgAtlOpenFailed::proc()");
mAgpsManager->reportAtlOpenFailed(mAgpsType);
}
};
sendMsg( new AgpsMsgAtlOpenFailed(&mAgpsManager, (AGpsExtType)agpsType));
}