/* Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation, nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include namespace android { namespace hardware { namespace gnss { namespace V2_0 { namespace implementation { using ::android::hardware::gnss::V2_0::GnssLocation; using ::android::hardware::gnss::V2_0::ElapsedRealtimeFlags; using ::android::hardware::gnss::V2_0::GnssConstellationType; using ::android::hardware::gnss::V1_0::GnssLocationFlags; void convertGnssLocation(Location& in, V1_0::GnssLocation& out) { memset(&out, 0, sizeof(V1_0::GnssLocation)); if (in.flags & LOCATION_HAS_LAT_LONG_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_LAT_LONG; out.latitudeDegrees = in.latitude; out.longitudeDegrees = in.longitude; } if (in.flags & LOCATION_HAS_ALTITUDE_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_ALTITUDE; out.altitudeMeters = in.altitude; } if (in.flags & LOCATION_HAS_SPEED_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_SPEED; out.speedMetersPerSec = in.speed; } if (in.flags & LOCATION_HAS_BEARING_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_BEARING; out.bearingDegrees = in.bearing; } if (in.flags & LOCATION_HAS_ACCURACY_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_HORIZONTAL_ACCURACY; out.horizontalAccuracyMeters = in.accuracy; } if (in.flags & LOCATION_HAS_VERTICAL_ACCURACY_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_VERTICAL_ACCURACY; out.verticalAccuracyMeters = in.verticalAccuracy; } if (in.flags & LOCATION_HAS_SPEED_ACCURACY_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_SPEED_ACCURACY; out.speedAccuracyMetersPerSecond = in.speedAccuracy; } if (in.flags & LOCATION_HAS_BEARING_ACCURACY_BIT) { out.gnssLocationFlags |= GnssLocationFlags::HAS_BEARING_ACCURACY; out.bearingAccuracyDegrees = in.bearingAccuracy; } out.timestamp = static_cast(in.timestamp); } bool getCurrentTime(struct timespec& currentTime, int64_t& sinceBootTimeNanos) { struct timespec sinceBootTime; struct timespec sinceBootTimeTest; bool clockGetTimeSuccess = false; const uint32_t MAX_TIME_DELTA_VALUE_NANOS = 10000; const uint32_t MAX_GET_TIME_COUNT = 20; /* Attempt to get CLOCK_REALTIME and CLOCK_BOOTIME in succession without an interruption or context switch (for up to MAX_GET_TIME_COUNT times) to avoid errors in the calculation */ for (uint32_t i = 0; i < MAX_GET_TIME_COUNT; i++) { if (clock_gettime(CLOCK_BOOTTIME, &sinceBootTime) != 0) { break; }; if (clock_gettime(CLOCK_REALTIME, ¤tTime) != 0) { break; } if (clock_gettime(CLOCK_BOOTTIME, &sinceBootTimeTest) != 0) { break; }; sinceBootTimeNanos = sinceBootTime.tv_sec * 1000000000 + sinceBootTime.tv_nsec; int64_t sinceBootTimeTestNanos = sinceBootTimeTest.tv_sec * 1000000000 + sinceBootTimeTest.tv_nsec; int64_t sinceBootTimeDeltaNanos = sinceBootTimeTestNanos - sinceBootTimeNanos; /* sinceBootTime and sinceBootTimeTest should have a close value if there was no interruption or context switch between clock_gettime for CLOCK_BOOTIME and clock_gettime for CLOCK_REALTIME */ if (sinceBootTimeDeltaNanos < MAX_TIME_DELTA_VALUE_NANOS) { clockGetTimeSuccess = true; break; } else { LOC_LOGd("Delta:%" PRIi64 "ns time too large, retry number #%u...", sinceBootTimeDeltaNanos, i + 1); } } return clockGetTimeSuccess; } void convertGnssLocation(Location& in, V2_0::GnssLocation& out) { memset(&out, 0, sizeof(V2_0::GnssLocation)); convertGnssLocation(in, out.v1_0); struct timespec currentTime; int64_t sinceBootTimeNanos; if (getCurrentTime(currentTime, sinceBootTimeNanos)) { if (in.flags & LOCATION_HAS_ELAPSED_REAL_TIME) { uint64_t qtimerDiff = 0; uint64_t qTimerTickCount = getQTimerTickCount(); if (qTimerTickCount >= in.elapsedRealTime) { qtimerDiff = qTimerTickCount - in.elapsedRealTime; } LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " in.elapsedRealTime=%" PRIi64 "" " qTimerTickCount=%" PRIi64 " qtimerDiff=%" PRIi64 "", sinceBootTimeNanos, in.elapsedRealTime, qTimerTickCount, qtimerDiff); uint64_t qTimerDiffNanos = qTimerTicksToNanos(double(qtimerDiff)); /* If the time difference between Qtimer on modem side and Qtimer on AP side is greater than one second we assume this is a dual-SoC device such as Kona and will try to get Qtimer on modem side and on AP side and will adjust our difference accordingly */ if (qTimerDiffNanos > 1000000000) { uint64_t qtimerDelta = getQTimerDeltaNanos(); if (qTimerDiffNanos >= qtimerDelta) { qTimerDiffNanos -= qtimerDelta; } } if (sinceBootTimeNanos >= qTimerDiffNanos) { out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIMESTAMP_NS; out.elapsedRealtime.timestampNs = sinceBootTimeNanos - qTimerDiffNanos; out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS; out.elapsedRealtime.timeUncertaintyNs = in.elapsedRealTimeUnc; } } else { int64_t currentTimeNanos = currentTime.tv_sec*1000000000 + currentTime.tv_nsec; int64_t locationTimeNanos = in.timestamp*1000000; LOC_LOGv("sinceBootTimeNanos:%" PRIi64 " currentTimeNanos:%" PRIi64 "" " locationTimeNanos:%" PRIi64 "", sinceBootTimeNanos, currentTimeNanos, locationTimeNanos); if (currentTimeNanos >= locationTimeNanos) { int64_t ageTimeNanos = currentTimeNanos - locationTimeNanos; LOC_LOGv("ageTimeNanos:%" PRIi64 ")", ageTimeNanos); // the max trusted propagation time 100ms for ageTimeNanos to avoid user setting // wrong time, it will affect elapsedRealtimeNanos if (ageTimeNanos <= 100000000) { out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIMESTAMP_NS; out.elapsedRealtime.timestampNs = sinceBootTimeNanos - ageTimeNanos; out.elapsedRealtime.flags |= ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS; // time uncertainty is the max value between abs(AP_UTC - MP_UTC) and 100ms, to // verify if user change the sys time out.elapsedRealtime.timeUncertaintyNs = std::max(ageTimeNanos, (int64_t)100000000); } } } } LOC_LOGv("out.elapsedRealtime.timestampNs=%" PRIi64 "" " out.elapsedRealtime.timeUncertaintyNs=%" PRIi64 "" " out.elapsedRealtime.flags=0x%X", out.elapsedRealtime.timestampNs, out.elapsedRealtime.timeUncertaintyNs, out.elapsedRealtime.flags); } void convertGnssLocation(const V1_0::GnssLocation& in, Location& out) { memset(&out, 0, sizeof(out)); if (in.gnssLocationFlags & GnssLocationFlags::HAS_LAT_LONG) { out.flags |= LOCATION_HAS_LAT_LONG_BIT; out.latitude = in.latitudeDegrees; out.longitude = in.longitudeDegrees; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_ALTITUDE) { out.flags |= LOCATION_HAS_ALTITUDE_BIT; out.altitude = in.altitudeMeters; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_SPEED) { out.flags |= LOCATION_HAS_SPEED_BIT; out.speed = in.speedMetersPerSec; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_BEARING) { out.flags |= LOCATION_HAS_BEARING_BIT; out.bearing = in.bearingDegrees; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_HORIZONTAL_ACCURACY) { out.flags |= LOCATION_HAS_ACCURACY_BIT; out.accuracy = in.horizontalAccuracyMeters; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_VERTICAL_ACCURACY) { out.flags |= LOCATION_HAS_VERTICAL_ACCURACY_BIT; out.verticalAccuracy = in.verticalAccuracyMeters; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_SPEED_ACCURACY) { out.flags |= LOCATION_HAS_SPEED_ACCURACY_BIT; out.speedAccuracy = in.speedAccuracyMetersPerSecond; } if (in.gnssLocationFlags & GnssLocationFlags::HAS_BEARING_ACCURACY) { out.flags |= LOCATION_HAS_BEARING_ACCURACY_BIT; out.bearingAccuracy = in.bearingAccuracyDegrees; } out.timestamp = static_cast(in.timestamp); } void convertGnssLocation(const V2_0::GnssLocation& in, Location& out) { memset(&out, 0, sizeof(out)); convertGnssLocation(in.v1_0, out); } void convertGnssConstellationType(GnssSvType& in, V1_0::GnssConstellationType& out) { switch(in) { case GNSS_SV_TYPE_GPS: out = V1_0::GnssConstellationType::GPS; break; case GNSS_SV_TYPE_SBAS: out = V1_0::GnssConstellationType::SBAS; break; case GNSS_SV_TYPE_GLONASS: out = V1_0::GnssConstellationType::GLONASS; break; case GNSS_SV_TYPE_QZSS: out = V1_0::GnssConstellationType::QZSS; break; case GNSS_SV_TYPE_BEIDOU: out = V1_0::GnssConstellationType::BEIDOU; break; case GNSS_SV_TYPE_GALILEO: out = V1_0::GnssConstellationType::GALILEO; break; case GNSS_SV_TYPE_UNKNOWN: default: out = V1_0::GnssConstellationType::UNKNOWN; break; } } void convertGnssConstellationType(GnssSvType& in, V2_0::GnssConstellationType& out) { switch(in) { case GNSS_SV_TYPE_GPS: out = V2_0::GnssConstellationType::GPS; break; case GNSS_SV_TYPE_SBAS: out = V2_0::GnssConstellationType::SBAS; break; case GNSS_SV_TYPE_GLONASS: out = V2_0::GnssConstellationType::GLONASS; break; case GNSS_SV_TYPE_QZSS: out = V2_0::GnssConstellationType::QZSS; break; case GNSS_SV_TYPE_BEIDOU: out = V2_0::GnssConstellationType::BEIDOU; break; case GNSS_SV_TYPE_GALILEO: out = V2_0::GnssConstellationType::GALILEO; break; case GNSS_SV_TYPE_NAVIC: out = V2_0::GnssConstellationType::IRNSS; break; case GNSS_SV_TYPE_UNKNOWN: default: out = V2_0::GnssConstellationType::UNKNOWN; break; } } void convertGnssSvid(GnssSv& in, int16_t& out) { switch (in.type) { case GNSS_SV_TYPE_GPS: out = in.svId; break; case GNSS_SV_TYPE_SBAS: out = in.svId; break; case GNSS_SV_TYPE_GLONASS: out = in.svId - GLO_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_QZSS: out = in.svId; break; case GNSS_SV_TYPE_BEIDOU: out = in.svId - BDS_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_GALILEO: out = in.svId - GAL_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_NAVIC: /*Android doesn't define Navic svid range yet, use Naviv svid [1, 14] now will update this once Android give Navic svid definiitons */ out = in.svId - NAVIC_SV_PRN_MIN + 1; break; default: out = in.svId; break; } } void convertGnssSvid(GnssMeasurementsData& in, int16_t& out) { switch (in.svType) { case GNSS_SV_TYPE_GPS: out = in.svId; break; case GNSS_SV_TYPE_SBAS: out = in.svId; break; case GNSS_SV_TYPE_GLONASS: if (in.svId != 255) { // OSN is known out = in.svId - GLO_SV_PRN_MIN + 1; } else { // OSN is not known, report FCN out = in.gloFrequency + 92; } break; case GNSS_SV_TYPE_QZSS: out = in.svId; break; case GNSS_SV_TYPE_BEIDOU: out = in.svId - BDS_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_GALILEO: out = in.svId - GAL_SV_PRN_MIN + 1; break; case GNSS_SV_TYPE_NAVIC: /*Android doesn't define Navic svid range yet, use Naviv svid [1, 14] now will update this once Android give Navic svid definiitons */ out = in.svId - NAVIC_SV_PRN_MIN + 1; break; default: out = in.svId; break; } } void convertGnssEphemerisType(GnssEphemerisType& in, GnssDebug::SatelliteEphemerisType& out) { switch(in) { case GNSS_EPH_TYPE_EPHEMERIS: out = GnssDebug::SatelliteEphemerisType::EPHEMERIS; break; case GNSS_EPH_TYPE_ALMANAC: out = GnssDebug::SatelliteEphemerisType::ALMANAC_ONLY; break; case GNSS_EPH_TYPE_UNKNOWN: default: out = GnssDebug::SatelliteEphemerisType::NOT_AVAILABLE; break; } } void convertGnssEphemerisSource(GnssEphemerisSource& in, GnssDebug::SatelliteEphemerisSource& out) { switch(in) { case GNSS_EPH_SOURCE_DEMODULATED: out = GnssDebug::SatelliteEphemerisSource::DEMODULATED; break; case GNSS_EPH_SOURCE_SUPL_PROVIDED: out = GnssDebug::SatelliteEphemerisSource::SUPL_PROVIDED; break; case GNSS_EPH_SOURCE_OTHER_SERVER_PROVIDED: out = GnssDebug::SatelliteEphemerisSource::OTHER_SERVER_PROVIDED; break; case GNSS_EPH_SOURCE_LOCAL: case GNSS_EPH_SOURCE_UNKNOWN: default: out = GnssDebug::SatelliteEphemerisSource::OTHER; break; } } void convertGnssEphemerisHealth(GnssEphemerisHealth& in, GnssDebug::SatelliteEphemerisHealth& out) { switch(in) { case GNSS_EPH_HEALTH_GOOD: out = GnssDebug::SatelliteEphemerisHealth::GOOD; break; case GNSS_EPH_HEALTH_BAD: out = GnssDebug::SatelliteEphemerisHealth::BAD; break; case GNSS_EPH_HEALTH_UNKNOWN: default: out = GnssDebug::SatelliteEphemerisHealth::UNKNOWN; break; } } } // namespace implementation } // namespace V2_0 } // namespace gnss } // namespace hardware } // namespace android