android_device_xiaomi_clover/camera/QCamera2/util/QCameraDualFOVPP.cpp

695 lines
24 KiB
C++
Raw Permalink Normal View History

/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define LOG_TAG "DualFOVPP"
// System dependencies
#include <dlfcn.h>
#include <utils/Errors.h>
#include <stdio.h>
#include <stdlib.h>
// Camera dependencies
#include "QCameraDualFOVPP.h"
#include "QCameraTrace.h"
#include "cam_intf.h"
extern "C" {
#include "mm_camera_dbg.h"
}
#define LIB_PATH_LENGTH 100
namespace qcamera {
/*===========================================================================
* FUNCTION : QCameraDualFOVPP
*
* DESCRIPTION: constructor of QCameraDualFOVPP.
*
* PARAMETERS : None
*
* RETURN : None
*==========================================================================*/
QCameraDualFOVPP::QCameraDualFOVPP()
: QCameraHALPP()
{
m_dlHandle = NULL;
m_pCaps = NULL;
}
/*===========================================================================
* FUNCTION : ~QCameraDualFOVPP
*
* DESCRIPTION: destructor of QCameraDualFOVPP.
*
* PARAMETERS : None
*
* RETURN : None
*==========================================================================*/
QCameraDualFOVPP::~QCameraDualFOVPP()
{
}
/*===========================================================================
* FUNCTION : init
*
* DESCRIPTION: initialization of QCameraDualFOVPP
*
* PARAMETERS :
* @bufNotifyCb : call back function after HALPP process
* @getOutputCb : call back function to request output buffe
* @pUserData : Parent of HALPP, i.e. QCameraPostProc
* @pStaticParam : holds dual camera calibration data in an array and its size
* (expected size is 264 bytes)
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::init(halPPBufNotify bufNotifyCb, halPPGetOutput getOutputCb,
void *pUserData, void *pStaticParam)
{
LOGD("E");
int32_t rc = NO_ERROR;
QCameraHALPP::init(bufNotifyCb, getOutputCb, pUserData);
m_pCaps = (cam_capability_t *)pStaticParam;
/* we should load 3rd libs here, with dlopen/dlsym */
doDualFovPPInit();
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : deinit
*
* DESCRIPTION: de initialization of QCameraDualFOVPP
*
* PARAMETERS : None
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::deinit()
{
int32_t rc = NO_ERROR;
LOGD("E");
m_dlHandle = NULL;
QCameraHALPP::deinit();
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : start
*
* DESCRIPTION: starting QCameraDualFOVPP
*
* PARAMETERS :
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::start()
{
int32_t rc = NO_ERROR;
LOGD("E");
rc = QCameraHALPP::start();
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : feedInput
*
* DESCRIPTION: function to feed input data.
* Enqueue the frame index to inputQ if it is new frame
* Also, add the input image data to frame hash map
*
* PARAMETERS :
* @pInput : ptr to input data
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::feedInput(qcamera_hal_pp_data_t *pInputData)
{
int32_t rc = NO_ERROR;
LOGD("E");
if (NULL != pInputData) {
mm_camera_buf_def_t *pInputSnapshotBuf = getSnapshotBuf(pInputData);
if (pInputSnapshotBuf != NULL) {
uint32_t frameIndex = pInputSnapshotBuf->frame_idx;
std::vector<qcamera_hal_pp_data_t*> *pVector = getFrameVector(frameIndex);
if(pVector == NULL) {
LOGD("insert new frame index = %d", frameIndex);
uint32_t *pFrameIndex = new uint32_t;
*pFrameIndex = frameIndex;
// new the vector first
pVector = new std::vector<qcamera_hal_pp_data_t*>(WIDE_TELE_CAMERA_NUMBER);
pVector->at(WIDE_INPUT) = NULL;
pVector->at(TELE_INPUT) = NULL;
// Add vector to the hash map
m_frameMap[frameIndex] = pVector;
// Enqueue the frame index (i.e. key of vector) to queue
if (false == m_inputQ.enqueue((void*)pFrameIndex)) {
LOGE("Input Q is not active!!!");
releaseData(pInputData);
m_frameMap.erase(frameIndex);
delete pFrameIndex;
delete pVector;
rc = INVALID_OPERATION;
return rc;
}
}
pInputData->frameIndex = frameIndex;
// Check if frame is from main wide camera
bool bIsMain = true;
uint32_t mainHandle = get_main_camera_handle(
pInputData->src_reproc_frame->camera_handle);
if (mainHandle == 0) {
bIsMain = false;
}
LOGD("mainHandle = %d, is main frame = %d", mainHandle, bIsMain);
// Add input data to vector
if (bIsMain) {
pVector->at(WIDE_INPUT) = pInputData;
} else {
pVector->at(TELE_INPUT) = pInputData;
}
// request output buffer only if both wide and tele input data are recieved
if (pVector->at(0) != NULL && pVector->at(1) != NULL) {
m_halPPGetOutputCB(frameIndex, m_pHalPPMgr);
}
}
} else {
LOGE("pInput is NULL");
rc = UNEXPECTED_NULL;
}
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : feedOutput
*
* DESCRIPTION: function to feed output buffer and metadata
*
* PARAMETERS :
* @pOutput : ptr to output data
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::feedOutput(qcamera_hal_pp_data_t *pOutputData)
{
int32_t rc = NO_ERROR;
LOGD("E");
if (NULL != pOutputData) {
uint32_t frameIndex = pOutputData->frameIndex;
std::vector<qcamera_hal_pp_data_t*> *pVector = getFrameVector(frameIndex);
// Get the Wide/Tele input frame in order to decide output buffer len,
// and copy metadata buffer.
if (pVector != NULL && pVector->at(WIDE_INPUT) != NULL && pVector->at(TELE_INPUT) != NULL) {
qcamera_hal_pp_data_t *pInputDataWide = pVector->at(WIDE_INPUT);
qcamera_hal_pp_data_t *pInputDataTele = pVector->at(TELE_INPUT);
mm_camera_buf_def_t *pBufWide = getSnapshotBuf(pInputDataWide);
mm_camera_buf_def_t *pBufTele = getSnapshotBuf(pInputDataTele);
if (pBufWide == NULL || pBufTele == NULL) {
LOGE("%s buf is null",(pBufWide == NULL) ? "wide" : "tele");
return UNEXPECTED_NULL;
}
LOGH("snapshot frame len, wide:%d, tele:%d", pBufWide->frame_len, pBufTele->frame_len);
qcamera_hal_pp_data_t *pInputData = pInputDataWide;
if (pBufTele->frame_len > pBufWide->frame_len) {
pInputData = pInputDataTele;
}
rc = getOutputBuffer(pInputData, pOutputData);
// Enqueue output_data to m_outgoingQ
if (false == m_outgoingQ.enqueue((void *)pOutputData)) {
LOGE("outgoing Q is not active!!!");
releaseData(pOutputData);
rc = INVALID_OPERATION;
}
}
} else {
LOGE("pOutput is NULL");
rc = UNEXPECTED_NULL;
}
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : process
*
* DESCRIPTION: Start FOV post process
*
* PARAMETERS : None
*
* RETURN : int32_t type of status
* NO_ERROR -- success
* none-zero failure code
*==========================================================================*/
int32_t QCameraDualFOVPP::process()
{
int32_t rc = NO_ERROR;
/* dump in/out frames */
char prop[PROPERTY_VALUE_MAX];
memset(prop, 0, sizeof(prop));
property_get("persist.vendor.camera.dualfov.dumpimg", prop, "0");
int dumpimg = atoi(prop);
LOGD("E");
// TODO: dequeue from m_inputQ and start process logic
// Start the blending process when it is ready
if (canProcess()) {
LOGI("start Dual FOV process");
uint32_t *pFrameIndex = (uint32_t *)m_inputQ.dequeue();
if (pFrameIndex == NULL) {
LOGE("frame index is null");
return UNEXPECTED_NULL;
}
uint32_t frameIndex = *pFrameIndex;
std::vector<qcamera_hal_pp_data_t*> *pVector = getFrameVector(frameIndex);
// Search vector of input frames in frame map
if (pVector == NULL) {
LOGE("Cannot find vecotr of input frames");
return UNEXPECTED_NULL;
}
// Get input and output frame buffer
qcamera_hal_pp_data_t *pInputMainData =
(qcamera_hal_pp_data_t *)pVector->at(WIDE_INPUT);
if (pInputMainData == NULL) {
LOGE("Cannot find input main data");
return UNEXPECTED_NULL;
}
if (pInputMainData->src_reproc_frame == NULL) {
LOGI("process pInputMainData->src_reproc_frame = NULL");
}
//mm_camera_super_buf_t *input_main_frame = input_main_data->frame;
qcamera_hal_pp_data_t *pInputAuxData =
(qcamera_hal_pp_data_t *)pVector->at(TELE_INPUT);
if (pInputAuxData == NULL) {
LOGE("Cannot find input aux data");
return UNEXPECTED_NULL;
}
//mm_camera_super_buf_t *input_aux_frame = input_aux_data->frame;
qcamera_hal_pp_data_t *pOutputData =
(qcamera_hal_pp_data_t*)m_outgoingQ.dequeue();
if (pOutputData == NULL) {
LOGE("Cannot find output data");
return UNEXPECTED_NULL;
}
mm_camera_buf_def_t *main_snapshot_buf =
getSnapshotBuf(pInputMainData);
if (main_snapshot_buf == NULL) {
LOGE("main_snapshot_buf is NULL");
return UNEXPECTED_NULL;
}
mm_camera_buf_def_t *main_meta_buf = getMetadataBuf(pInputMainData);
if (main_meta_buf == NULL) {
LOGE("main_meta_buf is NULL");
return UNEXPECTED_NULL;
}
mm_camera_buf_def_t *aux_snapshot_buf = getSnapshotBuf(pInputAuxData);
if (aux_snapshot_buf == NULL) {
LOGE("aux_snapshot_buf is NULL");
return UNEXPECTED_NULL;
}
mm_camera_buf_def_t *aux_meta_buf = getMetadataBuf(pInputAuxData);
if (aux_meta_buf == NULL) {
LOGE("aux_meta_buf is NULL");
return UNEXPECTED_NULL;
}
mm_camera_super_buf_t *output_frame = pOutputData->frame;
mm_camera_buf_def_t *output_snapshot_buf = output_frame->bufs[0];
// Use offset info from reproc stream
cam_frame_len_offset_t frm_offset = pInputMainData->snap_offset;
LOGI("<Wide> stride:%d, scanline:%d, frame len:%d",
frm_offset.mp[0].stride, frm_offset.mp[0].scanline,
frm_offset.frame_len);
if (dumpimg) {
dumpYUVtoFile((uint8_t *)main_snapshot_buf->buffer, frm_offset,
main_snapshot_buf->frame_idx, "wide");
}
frm_offset = pInputAuxData->snap_offset;
LOGI("<Tele> stride:%d, scanline:%d, frame len:%d",
frm_offset.mp[0].stride, frm_offset.mp[0].scanline,
frm_offset.frame_len);
if (dumpimg) {
dumpYUVtoFile((uint8_t *)aux_snapshot_buf->buffer, frm_offset,
aux_snapshot_buf->frame_idx, "tele");
}
//Get input and output parameter
dualfov_input_params_t inParams;
getInputParams(main_meta_buf, aux_meta_buf,
pInputMainData->snap_offset,
pInputMainData->snap_offset,
inParams);
dumpInputParams(inParams);
doDualFovPPProcess((const uint8_t *)main_snapshot_buf->buffer,
(const uint8_t *)aux_snapshot_buf->buffer,
inParams,
(uint8_t *)output_snapshot_buf->buffer);
if (dumpimg) {
frm_offset = pInputMainData->snap_offset;
if (aux_snapshot_buf->frame_len > main_snapshot_buf->frame_len) {
frm_offset = pInputAuxData->snap_offset;
}
dumpYUVtoFile((uint8_t *)output_snapshot_buf->buffer, frm_offset,
main_snapshot_buf->frame_idx, "out");
}
/* clean and invalidate caches, for input and output buffers*/
pOutputData->snapshot_heap->cleanInvalidateCache(0);
if (pInputMainData->jpeg_settings || pInputAuxData->jpeg_settings)
{
pOutputData->jpeg_settings = (jpeg_settings_t *)calloc(1,sizeof(jpeg_settings_t));
if (pOutputData->jpeg_settings == NULL) {
LOGE("No memory for src frame");
free(pOutputData);
return NO_MEMORY;
}
if(pInputMainData->jpeg_settings) {
memcpy(pOutputData->jpeg_settings, pInputMainData->jpeg_settings,
sizeof(jpeg_settings_t));
} else if (pInputAuxData->jpeg_settings) {
memcpy(pOutputData->jpeg_settings, pInputAuxData->jpeg_settings,
sizeof(jpeg_settings_t));
}
}
// Calling cb function to return output_data after processed.
LOGH("CB for output");
m_halPPBufNotifyCB(pOutputData, m_pHalPPMgr);
// also send input buffer to postproc.
LOGH("CB for wide input");
m_halPPBufNotifyCB(pInputMainData, m_pHalPPMgr);
LOGH("CB for tele input");
m_halPPBufNotifyCB(pInputAuxData, m_pHalPPMgr);
// Release internal resource
m_frameMap.erase(frameIndex);
delete pFrameIndex;
delete pVector;
}
LOGD("X");
return rc;
}
/*===========================================================================
* FUNCTION : canProcess
*
* DESCRIPTION: function to release internal resources
* RETURN : true if Dual FOV is ready to process
*==========================================================================*/
bool QCameraDualFOVPP::canProcess()
{
LOGD("E");
bool ready = false;
if(!m_inputQ.isEmpty() && !m_outgoingQ.isEmpty()) {
ready = true;
}
LOGD("X");
return ready;
}
/*===========================================================================
* FUNCTION : getInputParams
*
* DESCRIPTION: Helper function to get input params from input metadata
*==========================================================================*/
void QCameraDualFOVPP::getInputParams(mm_camera_buf_def_t *pMainMetaBuf,
mm_camera_buf_def_t *pAuxMetaBuf, cam_frame_len_offset_t main_offset,
cam_frame_len_offset_t aux_offset, dualfov_input_params_t& inParams)
{
LOGD("E");
memset(&inParams, 0, sizeof(dualfov_input_params_t));
metadata_buffer_t *pMainMeta = (metadata_buffer_t *)pMainMetaBuf->buffer;
metadata_buffer_t *pAuxMeta = (metadata_buffer_t *)pAuxMetaBuf->buffer;
// Wide frame size
inParams.wide.width = main_offset.mp[0].width;
inParams.wide.height = main_offset.mp[0].height;
inParams.wide.stride = main_offset.mp[0].stride;
inParams.wide.scanline = main_offset.mp[0].scanline;
inParams.wide.frame_len = main_offset.frame_len;
// Tele frame size
inParams.tele.width = aux_offset.mp[0].width;
inParams.tele.height = aux_offset.mp[0].height;
inParams.tele.stride = aux_offset.mp[0].stride;
inParams.tele.scanline = aux_offset.mp[0].scanline;
inParams.tele.frame_len = aux_offset.frame_len;
// user_zoom
int32_t zoom_level = -1; // 0 means zoom 1x.
IF_META_AVAILABLE(cam_zoom_info_t, zoomInfoMain, CAM_INTF_PARM_USERZOOM, pMainMeta) {
// Get main camera zoom value
for (uint32_t i = 0; i < zoomInfoMain->num_streams; ++i) {
if (zoomInfoMain->stream_zoom_info[i].stream_type == CAM_STREAM_TYPE_SNAPSHOT) {
zoom_level = zoomInfoMain->stream_zoom_info[i].stream_zoom;
}
}
LOGD("zoom level in main meta:%d", zoom_level);
}
inParams.user_zoom= getUserZoomRatio(zoom_level);
LOGI("dual fov total zoom ratio: %d", inParams.user_zoom);
IF_META_AVAILABLE(cam_zoom_info_t, zoomInfoAux, CAM_INTF_PARM_USERZOOM, pAuxMeta) {
zoom_level = -1;
// Get aux camera zoom value
for (uint32_t i = 0; i < zoomInfoAux->num_streams; ++i) {
if (zoomInfoAux->stream_zoom_info[i].stream_type == CAM_STREAM_TYPE_SNAPSHOT) {
zoom_level = zoomInfoAux->stream_zoom_info[i].stream_zoom;
}
}
LOGD("zoom level in aux meta:%d", zoom_level);
}
IF_META_AVAILABLE(uint32_t, afState, CAM_INTF_META_AF_STATE, pMainMeta) {
if (((*afState) == CAM_AF_STATE_FOCUSED_LOCKED) ||
((*afState) == CAM_AF_STATE_PASSIVE_FOCUSED)) {
inParams.af_status = AF_STATUS_VALID;
} else {
inParams.af_status = AF_STATUS_INVALID;
}
LOGD("af state:%d, output af status:%d", *afState, inParams.af_status);
}
IF_META_AVAILABLE(uint32_t, auxAfState, CAM_INTF_META_AF_STATE, pAuxMeta) {
int aux_af_status = 0;
if (((*auxAfState) == CAM_AF_STATE_FOCUSED_LOCKED) ||
((*auxAfState) == CAM_AF_STATE_PASSIVE_FOCUSED)) {
aux_af_status = AF_STATUS_VALID;
} else {
aux_af_status = AF_STATUS_INVALID;
}
LOGD("aux af state:%d, output af status:%d", *auxAfState, aux_af_status);
}
LOGD("X");
}
int32_t QCameraDualFOVPP::doDualFovPPInit()
{
LOGD("E");
int rc = NO_ERROR;
LOGD("X");
return rc;
}
int32_t QCameraDualFOVPP::doDualFovPPProcess(const uint8_t* pWide, const uint8_t* pTele,
dualfov_input_params_t inParams,
uint8_t* pOut)
{
LOGW("E.");
// trace begin
if (inParams.tele.frame_len == inParams.wide.frame_len) {
LOGD("copy to output, half from wide, half from tele..");
// half image from main, and half image from tele
// Y
memcpy(pOut, pWide, inParams.wide.stride * inParams.wide.scanline / 2);
memcpy(pOut + inParams.wide.stride * inParams.wide.scanline / 2,
pTele + inParams.wide.stride * inParams.wide.scanline / 2,
inParams.wide.stride * inParams.wide.scanline / 2);
// UV
uint32_t uv_offset = inParams.wide.stride * inParams.wide.scanline;
memcpy(pOut + uv_offset,
pWide + uv_offset,
inParams.wide.stride * (inParams.wide.scanline / 2) / 2);
memcpy(pOut + uv_offset + inParams.wide.stride * (inParams.wide.scanline / 2) / 2,
pTele + uv_offset + inParams.wide.stride * (inParams.wide.scanline / 2) / 2,
inParams.wide.stride * (inParams.wide.scanline / 2) / 2);
} else {
// copy the larger input buffer to output
const uint8_t* pIn = pWide;
uint32_t len = inParams.wide.frame_len;
if (inParams.tele.frame_len > inParams.wide.frame_len) {
LOGD("copy tele to output");
pIn = pTele;
len = inParams.tele.frame_len;
} else {
LOGD("copy wide to output");
pIn = pWide;
len = inParams.wide.frame_len;
}
memcpy(pOut, pIn, len);
}
// trace end
LOGW("X.");
return NO_ERROR;
}
uint32_t QCameraDualFOVPP::getUserZoomRatio(int32_t zoom_level)
{
uint32_t zoom_ratio = 4096;
LOGD("E. input zoom level:%d", zoom_level);
if (zoom_level < 0) {
LOGW("invalid zoom evel!");
/* got the zoom value from QCamera2HWI Parameters */
zoom_level = 0;
}
// user_zoom_ratio = qcom_zoom_ratio * 4096 / 100
if (m_pCaps != NULL) {
zoom_ratio *= m_pCaps->zoom_ratio_tbl[zoom_level];
zoom_ratio /= 100;
LOGD("converted zoom ratio:%d", zoom_ratio);
}
LOGD("X. zoom_ratio:%d", zoom_ratio);
return zoom_ratio;
}
void QCameraDualFOVPP::dumpYUVtoFile(const uint8_t* pBuf, cam_frame_len_offset_t offset, uint32_t idx, const char* name_prefix)
{
LOGD("E.");
char filename[256];
snprintf(filename, sizeof(filename), QCAMERA_DUMP_FRM_LOCATION"%s_%dx%d_%d.yuv",
name_prefix, offset.mp[0].stride, offset.mp[0].scanline, idx);
QCameraHALPP::dumpYUVtoFile(pBuf,(const char*)filename, offset.frame_len);
LOGD("X.");
}
void QCameraDualFOVPP::dumpInputParams(const dualfov_input_params_t& p)
{
LOGD("E");
const cam_frame_size_t* s = NULL;
s = &p.wide;
LOGD("wide frame size: %d, %d, stride:%d, scanline:%d",
s->width, s->height, s->stride, s->scanline);
s = &p.tele;
LOGD("wide frame size: %d, %d, stride:%d, scanline:%d",
s->width, s->height, s->stride, s->scanline);
LOGD("zoom ratio: %f", p.user_zoom / 4096.0);
LOGD("X");
}
/*===========================================================================
* FUNCTION : dumpOISData
*
* DESCRIPTION: Read Sensor OIS data from metadata and dump it
*
* PARAMETERS :
* @pMetadata : Frame metadata
*
* RETURN : None
*
*==========================================================================*/
void QCameraDualFOVPP::dumpOISData(metadata_buffer_t* pMetadata)
{
if (!pMetadata) {
LOGD("OIS data not available");
return;
}
IF_META_AVAILABLE(cam_ois_data_t, pOisData, CAM_INTF_META_OIS_READ_DATA, pMetadata) {
LOGD("Ois Data: data size: %d", pOisData->size);
uint8_t *data = pOisData->data;
if (pOisData->size == 8) {
LOGD("Ois Data Buffer : %d %d %d %d %d %d %d %d ",
data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
}
}
return;
}
} // namespace qcamera